Enhanced the thermal/chemical stability of Cu NWs with solution-grown Al2O3 nanoshell for application in ultra-flexible temperature detection sensors

纳米壳 材料科学 热稳定性 纳米线 电极 纳米技术 数码产品 光电子学 光电效应 柔性电子器件 化学工程 复合材料 等离子体子 冶金 化学 电气工程 工程类 物理化学
作者
Le Zhao,Pan Yang,Shuai Shi,Xiuyu Wang,Shihui Yu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:473: 145156-145156 被引量:12
标识
DOI:10.1016/j.cej.2023.145156
摘要

The research of transparent electrode has always been a hot topic, but the lack of low cost and high stability flexible transparent electrode has hindered the development of flexible electronics, which has become a non-negligible obstacle. Here, we report a simple, low-cost, all-solution method for self-assembly growth of Al2O3 nanoshells on copper nanowires (Cu NWs), which improves the photoelectric properties of Cu NW as well as its thermal and chemical stability. The reaction of Al3+ and Cu atoms occurs in the presence of water, and a reasonable mechanism of Al2O3 formation is proposed. The Al2O3 nanoshell-coated Cu NWs network shows low sheet resistance of 15.6 Ω/sq with the optical transmittance of 84.7%. In addition, Al2O3@Cu NWs network exhibits excellent stability in a range of harsh environments (strong oxidation, high temperature and humid conditions), even comparable to Ag NWs. More importantly, based on the principle that copper metal resistivity varies with temperature, and taking advantage of the excellent stability and enhanced high temperature resistance of Al2O3@Cu NWs, we proposed an Al2O3@Cu NWs/PVDF composite temperature sensor. The ultra-thin, stable characteristics and unique semi-embedded structure and the ability of can being perfectly fitted to the skin, making it have great application potential in wearable flexible electronics and great guiding significance for the development of electronic skin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
flow完成签到,获得积分10
刚刚
刚刚
刚刚
黄嘟嘟完成签到,获得积分10
1秒前
bwbw完成签到,获得积分10
1秒前
大橙子发布了新的文献求助10
1秒前
难过鸿涛应助学术咸鱼采纳,获得10
1秒前
今何在完成签到,获得积分10
2秒前
BESTZJ完成签到,获得积分10
2秒前
爆米花应助gww采纳,获得10
2秒前
2秒前
2秒前
风趣的天奇完成签到,获得积分10
2秒前
2秒前
2秒前
运气先生完成签到 ,获得积分10
3秒前
flow发布了新的文献求助10
3秒前
小西贝完成签到 ,获得积分10
3秒前
一个小太阳鸭完成签到,获得积分10
3秒前
脑洞疼应助xiuxiu_27采纳,获得10
4秒前
eth完成签到,获得积分10
4秒前
华仔应助wzm采纳,获得10
4秒前
Anyixx完成签到 ,获得积分10
5秒前
5秒前
成哥完成签到,获得积分10
5秒前
灵巧的坤发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
5秒前
OceanBlvdforme完成签到,获得积分10
6秒前
pigzhu发布了新的文献求助30
6秒前
梦梦完成签到,获得积分10
7秒前
7秒前
8秒前
魏煜佳发布了新的文献求助10
8秒前
9秒前
9秒前
潸潸发布了新的文献求助10
10秒前
脆弱的仙人掌完成签到,获得积分20
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759