Input-to-state stability of stochastic Markovian jump genetic regulatory networks

基因调控网络 计算机科学 遗传网络 噪音(视频) 理论(学习稳定性) 控制理论(社会学) 随机过程 数学 基因 遗传学 人工智能 生物 控制(管理) 机器学习 基因表达 统计 图像(数学)
作者
Yang Cao,A. Chandrasekar,T. Radhika,V. Vijayakumar
出处
期刊:Mathematics and Computers in Simulation [Elsevier]
被引量:38
标识
DOI:10.1016/j.matcom.2023.08.007
摘要

The development of gene circuits in logic modules that start enormous output distributions with low signal-to-noise ratios is a difficult problem in engineering. As a result, the gene model depicts the transcription and translation of a single gene produced in the modification of noise in isolated logic modules. Our goal is to construct such networks with all types of connectivity. Further, the impacts of noise on further complex genetic networks have been investigated using stochastic gene models. Using this information as a foundation, our research investigates the input-to-state stability investigation for stochastic Markovian jump genetic regulatory networks with time-varying delay components. The goal of this article is to develop genetic networks with temporal delays, which are crucial for genetic regulation because slow biochemical processes like gene transcription and translation need time to occur. Additionally, the Markovian chain is essential for demonstrating how a system shifts from one mode to another with known transition probabilities. In the stochastic case, some complex systems with random disturbance will occur. Due to this significance the genetic regulatory network with stochastic case is applied to identify the complex behaviour among genes and proteins of the micro perspective. By establishing the Lyapunov functional with Ito’s and Dynkin’s formula, new stability conditions are derived and which is effectively solved by MATLAB toolbox. The efficiency of the suggested technique is demonstrated using a numerical example.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助30
刚刚
2秒前
jiangjiang完成签到 ,获得积分10
3秒前
ccc发布了新的文献求助10
3秒前
Raul完成签到 ,获得积分10
4秒前
4秒前
滴嘟滴嘟完成签到 ,获得积分10
5秒前
大头老婆完成签到 ,获得积分10
5秒前
星海完成签到,获得积分10
6秒前
1111发布了新的文献求助10
6秒前
6秒前
pyzhu应助SFYIII采纳,获得30
7秒前
良言完成签到,获得积分10
7秒前
ZERO完成签到,获得积分10
8秒前
爆米花应助单纯芹菜采纳,获得10
8秒前
科研通AI2S应助Tal采纳,获得10
9秒前
9秒前
科研通AI2S应助LLL采纳,获得10
10秒前
赵teng发布了新的文献求助10
10秒前
扶余山本完成签到 ,获得积分10
11秒前
11秒前
zhangscience发布了新的文献求助10
12秒前
pyzhu应助12Q采纳,获得10
13秒前
Ll完成签到 ,获得积分10
13秒前
冉冉发布了新的文献求助10
14秒前
A0228号卫星完成签到 ,获得积分10
14秒前
认真的可冥完成签到,获得积分10
15秒前
maque4004完成签到,获得积分10
17秒前
超帅的又槐完成签到,获得积分10
18秒前
赵teng完成签到,获得积分20
18秒前
华仔应助zhangscience采纳,获得10
19秒前
薰硝壤应助认真的可冥采纳,获得10
19秒前
21秒前
龙1完成签到,获得积分10
21秒前
23秒前
大个应助单纯芹菜采纳,获得10
24秒前
852应助科研通管家采纳,获得10
25秒前
wanci应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
26秒前
田様应助科研通管家采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Ethnicities: Media, Health, and Coping 700
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 600
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3088895
求助须知:如何正确求助?哪些是违规求助? 2741067
关于积分的说明 7563024
捐赠科研通 2391205
什么是DOI,文献DOI怎么找? 1268199
科研通“疑难数据库(出版商)”最低求助积分说明 614019
版权声明 598684