Input-to-state stability of stochastic Markovian jump genetic regulatory networks

基因调控网络 计算机科学 遗传网络 噪音(视频) 理论(学习稳定性) 控制理论(社会学) 随机过程 数学 基因 遗传学 人工智能 生物 控制(管理) 机器学习 基因表达 统计 图像(数学)
作者
Yang Cao,A. Chandrasekar,T. Radhika,V. Vijayakumar
出处
期刊:Mathematics and Computers in Simulation [Elsevier BV]
被引量:38
标识
DOI:10.1016/j.matcom.2023.08.007
摘要

The development of gene circuits in logic modules that start enormous output distributions with low signal-to-noise ratios is a difficult problem in engineering. As a result, the gene model depicts the transcription and translation of a single gene produced in the modification of noise in isolated logic modules. Our goal is to construct such networks with all types of connectivity. Further, the impacts of noise on further complex genetic networks have been investigated using stochastic gene models. Using this information as a foundation, our research investigates the input-to-state stability investigation for stochastic Markovian jump genetic regulatory networks with time-varying delay components. The goal of this article is to develop genetic networks with temporal delays, which are crucial for genetic regulation because slow biochemical processes like gene transcription and translation need time to occur. Additionally, the Markovian chain is essential for demonstrating how a system shifts from one mode to another with known transition probabilities. In the stochastic case, some complex systems with random disturbance will occur. Due to this significance the genetic regulatory network with stochastic case is applied to identify the complex behaviour among genes and proteins of the micro perspective. By establishing the Lyapunov functional with Ito’s and Dynkin’s formula, new stability conditions are derived and which is effectively solved by MATLAB toolbox. The efficiency of the suggested technique is demonstrated using a numerical example.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大秦帝国完成签到,获得积分10
刚刚
夏轩FromHard完成签到,获得积分10
刚刚
yn发布了新的文献求助10
刚刚
William完成签到 ,获得积分10
1秒前
1秒前
happiness完成签到 ,获得积分10
1秒前
谨慎纸飞机完成签到,获得积分10
1秒前
yao完成签到,获得积分10
1秒前
2秒前
2秒前
SciGPT应助ranran采纳,获得10
2秒前
歡禧完成签到,获得积分10
3秒前
3秒前
科研小迷糊完成签到,获得积分10
3秒前
十六发布了新的文献求助10
3秒前
小甑发布了新的文献求助10
4秒前
大个应助半疯半癫采纳,获得30
4秒前
CodeCraft应助应天亦采纳,获得30
4秒前
4秒前
火星上藏鸟完成签到,获得积分10
4秒前
4秒前
wangxuan完成签到,获得积分10
5秒前
5秒前
Orange应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
隐形曼青应助科研通管家采纳,获得10
6秒前
ludong_0应助科研通管家采纳,获得10
6秒前
6秒前
缓慢如南应助科研通管家采纳,获得10
6秒前
缓慢如南应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
共享精神应助科研通管家采纳,获得10
6秒前
ludong_0应助科研通管家采纳,获得10
6秒前
缓慢如南应助科研通管家采纳,获得10
6秒前
Hello应助科研通管家采纳,获得10
6秒前
6秒前
古往今来应助科研通管家采纳,获得20
7秒前
ding应助科研通管家采纳,获得50
7秒前
李健应助科研通管家采纳,获得30
7秒前
F503完成签到,获得积分10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582