化学
醛脱氢酶
醇脱氢酶
酶
生物化学
肽
乙醇
猝灭(荧光)
结合常数
圆二色性
生物信息学
荧光
结合位点
物理
量子力学
基因
作者
Zixu Wang,Lujuan Xing,Jiaming Cai,Fidel Toldrá,Yuejing Hao,Wangang Zhang
标识
DOI:10.1016/j.fbio.2023.103036
摘要
Alcoholic liver disease (ALD) is a worldwide disease caused by excessive ethanol consumption. In current study, hepatoprotective peptides were isolated from the porcine liver while their activities and interactions with ethanol metabolizing enzymes (alcohol dehydrogenase: ADH/acetaldehyde dehydrogenase: ALDH) were analyzed. The alcalase digested porcine liver hydrolysate (PLH) was confirmed to possess ADH/ALDH activation ability in a dose-dependent manner. The peptide sequences of PLH were identified by mass spectrometry. Molecular docking and in silico analysis were federatively used for screening. NTLPHPTAP had the lowest binding energy with ADH (−0.88 kcal/mol) and low toxicity. Fluorescence quenching data showed a dynamic fluorescence quenching constant (Kq) for NTLPHPTAP interacting with ADH/ALDH (ADH: 1.57 × 10−10 M−1 s−1; ALDH:1.961 × 10−10 M−1 s−1). Circular dichroism (CD) spectra and infrared spectrometer (FTIR) revealed that the enzyme secondary structures became flexible and disordered after interaction with NTLPHPTAP. Meanwhile, the ADH/ALDH was speculated to bind NTLPHPTAP via amido and carbonyl groups, respectively. These results indicated that the formation of ADH/ALDH-NTLPHPTAP complexes expanded the overall structure of the original enzymes and further increased the possibility of enzyme-substrate binding. In conclusion, the study proposed a method for the extraction of porcine liver hepatoprotective peptides and suggested further explanation for the interaction between NTLPHPTAP and ADH/ALDH in vitro.
科研通智能强力驱动
Strongly Powered by AbleSci AI