蒽
荧光团
荧光
聚合物
加合物
材料科学
光化学
化学
化学工程
纳米技术
复合材料
有机化学
光学
物理
工程类
作者
Fan Yang,Ting Geng,Hang Shen,Yan Kou,Guanjun Xiao,Bo Zou,Yulan Chen
标识
DOI:10.1002/anie.202308662
摘要
Optical force probes that can release force-dependent and visualized signals with minimal changes in the polymer main chains under mechanical load are highly sought after but currently limited. In this study, we introduce a flex-activated mechanophore (FA) based on the Diels-Alder adduct of anthracene and dimethyl acetylenedicarboxylatea that exhibits turn-on mechanofluorescence. We demonstrate that when FA is incorporated into polymer networks or in its crystalline state, it can release fluorescent anthracenes through a retro-Diels-Alder mechanochemical reaction under compression or hydrostatic high pressure, respectively. The flex-activated mechanism of FA is successfully confirmed. Furthermore, we systematically modulate the force delivered to the mechanophore by varying the crosslinking density of the networks and the applied macroscopic pressures. This modulation leads to incremental increases in mechanophore activation, successive release of anthracenes, and quantitative enhancement of fluorescence intensity. The exceptional potential of FA as a sensitive force probe in different bulk states is highlighted, benefiting from its unique flex-activated mode with highly emissive fluorophore releasing. Overall, this report enriches our understanding of the structures and functions of flex-activated mechanophores and polymeric materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI