Behavioral response of fish under ammonia nitrogen stress based on machine vision

计算机科学 水产养殖 人工智能 环境科学 氮气 模拟 渔业 化学 生物 有机化学
作者
Wenkai Xu,Chang Liu,Guangxu Wang,Yue Zhao,Jiaxuan Yu,Akhter Muhammad,Daoliang Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107442-107442 被引量:5
标识
DOI:10.1016/j.engappai.2023.107442
摘要

The long-term accumulation of ammonia nitrogen in aquaculture seriously affects the life of fish and even causes large-scale death. Moreover, when the concentration of ammonia nitrogen starts to accumulate, it is a judgment standard to provide early warning through the changes in fish behavior to prevent excessive ammonia nitrogen in water. Therefore, this paper proposes a novel approach to monitoring water quality for aquaculture based on deep learning and three-dimensional movement trajectory. The improved YOLOv8 model was used as the object detection approach to obtain three-dimensional position information of fish by combining Kalman filter, Kuhn Munkres (KM) algorithm, and Kernelized Correlation Filters (KCF) algorithm. The proposed approach was evaluated in the recovery experiment of acute ammonia nitrogen stress of sturgeon, bass, and crucian. The experimental results show that the precision, recall, [email protected], and [email protected]:0.95 of the improved YOLOv8 model are 0.964, 0.914, 0.979, and 0.602, respectively. In addition, the proposed three-dimensional positioning approach can qualitatively and quantitatively analyze the fish behavior in different stages and further explores the fish behavior changes through behavior trajectories, volumes of exercise, spatial distribution, and movement velocity. This research provides a new method and idea for studying the abnormal behavior of aquatic animals under ammonia nitrogen stress and has theoretical and practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫好好发布了新的文献求助20
1秒前
ding应助娟儿采纳,获得10
2秒前
Wenhao发布了新的文献求助10
2秒前
3秒前
喜悦的怀梦完成签到,获得积分10
3秒前
研友_VZG7GZ应助醉熏的笑萍采纳,获得10
4秒前
英俊的铭应助dkm采纳,获得10
5秒前
5秒前
ding应助刻苦的晓槐采纳,获得10
5秒前
YKH发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
8秒前
9秒前
田様应助孙意冉采纳,获得10
9秒前
Lucas应助跑向wb采纳,获得10
9秒前
COSMAO完成签到 ,获得积分10
10秒前
shinn发布了新的文献求助30
10秒前
所所应助YDX采纳,获得10
11秒前
研途者发布了新的文献求助10
11秒前
小马甲应助angewbaby采纳,获得10
12秒前
Tsui发布了新的文献求助10
12秒前
123发布了新的文献求助10
13秒前
geen发布了新的文献求助10
15秒前
风清扬发布了新的文献求助10
17秒前
可爱的函函应助sqz采纳,获得10
18秒前
Labubu完成签到,获得积分10
18秒前
Huang2547完成签到,获得积分10
18秒前
思源应助shinn采纳,获得10
19秒前
19秒前
19秒前
21秒前
21秒前
YDX发布了新的文献求助10
24秒前
精明的沅发布了新的文献求助10
24秒前
大模型应助楼楼楼采纳,获得30
25秒前
26秒前
Annie发布了新的文献求助10
26秒前
victorchen发布了新的文献求助10
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519700
关于积分的说明 11199305
捐赠科研通 3256034
什么是DOI,文献DOI怎么找? 1798049
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305