Behavioral response of fish under ammonia nitrogen stress based on machine vision

计算机科学 水产养殖 人工智能 环境科学 氮气 模拟 渔业 化学 生物 有机化学
作者
Wenkai Xu,Chang Liu,Guangxu Wang,Yue Zhao,Jiaxuan Yu,Akhter Muhammad,Daoliang Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier BV]
卷期号:128: 107442-107442 被引量:5
标识
DOI:10.1016/j.engappai.2023.107442
摘要

The long-term accumulation of ammonia nitrogen in aquaculture seriously affects the life of fish and even causes large-scale death. Moreover, when the concentration of ammonia nitrogen starts to accumulate, it is a judgment standard to provide early warning through the changes in fish behavior to prevent excessive ammonia nitrogen in water. Therefore, this paper proposes a novel approach to monitoring water quality for aquaculture based on deep learning and three-dimensional movement trajectory. The improved YOLOv8 model was used as the object detection approach to obtain three-dimensional position information of fish by combining Kalman filter, Kuhn Munkres (KM) algorithm, and Kernelized Correlation Filters (KCF) algorithm. The proposed approach was evaluated in the recovery experiment of acute ammonia nitrogen stress of sturgeon, bass, and crucian. The experimental results show that the precision, recall, [email protected], and [email protected]:0.95 of the improved YOLOv8 model are 0.964, 0.914, 0.979, and 0.602, respectively. In addition, the proposed three-dimensional positioning approach can qualitatively and quantitatively analyze the fish behavior in different stages and further explores the fish behavior changes through behavior trajectories, volumes of exercise, spatial distribution, and movement velocity. This research provides a new method and idea for studying the abnormal behavior of aquatic animals under ammonia nitrogen stress and has theoretical and practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
娇气的背包完成签到,获得积分10
刚刚
fu完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
FashionBoy应助三水采纳,获得10
2秒前
3秒前
隐形曼青应助Luu采纳,获得10
3秒前
凛冬完成签到,获得积分10
3秒前
starry完成签到,获得积分10
4秒前
4秒前
4秒前
kiki发布了新的文献求助10
5秒前
YHHHH应助小白一枚采纳,获得20
5秒前
Yola发布了新的文献求助10
5秒前
芒果发布了新的文献求助10
5秒前
彭于晏应助教授王采纳,获得10
6秒前
ikun完成签到,获得积分10
6秒前
6秒前
丘比特应助ldx采纳,获得10
6秒前
椰树椰汁发布了新的文献求助30
6秒前
我是老大应助hhh采纳,获得10
7秒前
7秒前
大气的山彤完成签到,获得积分10
7秒前
再也不拖发布了新的文献求助10
8秒前
花轻发布了新的文献求助20
8秒前
9秒前
orixero应助星川采纳,获得10
9秒前
风车术发布了新的文献求助10
9秒前
9秒前
嘻嘻应助零零零零采纳,获得10
10秒前
10秒前
我是老大应助YM采纳,获得10
10秒前
10秒前
科目三应助怡然幻然采纳,获得10
12秒前
姽稚发布了新的文献求助10
13秒前
隐形曼青应助大钱采纳,获得30
13秒前
sherrinford发布了新的文献求助20
14秒前
无昵称发布了新的文献求助10
14秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970157
求助须知:如何正确求助?哪些是违规求助? 3514887
关于积分的说明 11176340
捐赠科研通 3250158
什么是DOI,文献DOI怎么找? 1795198
邀请新用户注册赠送积分活动 875668
科研通“疑难数据库(出版商)”最低求助积分说明 805004