Behavioral response of fish under ammonia nitrogen stress based on machine vision

计算机科学 水产养殖 人工智能 环境科学 氮气 模拟 渔业 化学 生物 有机化学
作者
Wenkai Xu,Chang Liu,Guangxu Wang,Yue Zhao,Jiaxuan Yu,Akhter Muhammad,Daoliang Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:128: 107442-107442 被引量:5
标识
DOI:10.1016/j.engappai.2023.107442
摘要

The long-term accumulation of ammonia nitrogen in aquaculture seriously affects the life of fish and even causes large-scale death. Moreover, when the concentration of ammonia nitrogen starts to accumulate, it is a judgment standard to provide early warning through the changes in fish behavior to prevent excessive ammonia nitrogen in water. Therefore, this paper proposes a novel approach to monitoring water quality for aquaculture based on deep learning and three-dimensional movement trajectory. The improved YOLOv8 model was used as the object detection approach to obtain three-dimensional position information of fish by combining Kalman filter, Kuhn Munkres (KM) algorithm, and Kernelized Correlation Filters (KCF) algorithm. The proposed approach was evaluated in the recovery experiment of acute ammonia nitrogen stress of sturgeon, bass, and crucian. The experimental results show that the precision, recall, [email protected], and [email protected]:0.95 of the improved YOLOv8 model are 0.964, 0.914, 0.979, and 0.602, respectively. In addition, the proposed three-dimensional positioning approach can qualitatively and quantitatively analyze the fish behavior in different stages and further explores the fish behavior changes through behavior trajectories, volumes of exercise, spatial distribution, and movement velocity. This research provides a new method and idea for studying the abnormal behavior of aquatic animals under ammonia nitrogen stress and has theoretical and practical significance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Gauss完成签到,获得积分0
刚刚
很蓝的天完成签到,获得积分10
3秒前
2248388622完成签到,获得积分10
3秒前
4秒前
Nana2021完成签到,获得积分10
4秒前
荣匪发布了新的文献求助10
5秒前
wcdd完成签到,获得积分10
8秒前
2248388622发布了新的文献求助10
9秒前
哎嘿应助郭欣12采纳,获得10
9秒前
椿上春树发布了新的文献求助10
10秒前
11秒前
小马甲应助imshao采纳,获得10
11秒前
11秒前
深情安青应助荣匪采纳,获得10
12秒前
三心驳回了英姑应助
14秒前
36456657应助haoheee采纳,获得10
14秒前
UU完成签到 ,获得积分10
16秒前
AllenZ发布了新的文献求助10
16秒前
所所应助小祖采纳,获得10
17秒前
小鹅完成签到,获得积分10
17秒前
额尔其子完成签到,获得积分10
18秒前
ying完成签到,获得积分10
18秒前
L_Gary完成签到,获得积分10
18秒前
大旭完成签到 ,获得积分10
18秒前
20秒前
20秒前
喜悦寒凝完成签到,获得积分10
21秒前
椿上春树完成签到,获得积分10
22秒前
科研通AI2S应助2248388622采纳,获得10
23秒前
linggaga发布了新的文献求助10
24秒前
24秒前
24秒前
zho发布了新的文献求助10
25秒前
28秒前
29秒前
CHENJIXIANG发布了新的文献求助30
29秒前
想吃麻辣烫完成签到 ,获得积分10
29秒前
善良的远锋发布了新的文献求助100
29秒前
呼呼发布了新的文献求助20
30秒前
YINLANRUI完成签到 ,获得积分10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155969
求助须知:如何正确求助?哪些是违规求助? 2807310
关于积分的说明 7872521
捐赠科研通 2465654
什么是DOI,文献DOI怎么找? 1312280
科研通“疑难数据库(出版商)”最低求助积分说明 630031
版权声明 601905