重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Improved joint X-ray and neutron refinement procedure in Phenix

中子衍射 中子 衍射 物理 结晶学 材料科学 化学 核物理学 光学
作者
Dorothée Liebschner,Pavel V. Afonine,Billy K. Poon,Nigel W. Moriarty,Paul D. Adams
标识
DOI:10.1107/s2059798323008914
摘要

Neutron diffraction is one of the three crystallographic techniques (X-ray, neutron and electron diffraction) used to determine the atomic structures of molecules. Its particular strengths derive from the fact that H (and D) atoms are strong neutron scatterers, meaning that their positions, and thus protonation states, can be derived from crystallographic maps. However, because of technical limitations and experimental obstacles, the quality of neutron diffraction data is typically much poorer (completeness, resolution and signal to noise) than that of X-ray diffraction data for the same sample. Further, refinement is more complex as it usually requires additional parameters to describe the H (and D) atoms. The increase in the number of parameters may be mitigated by using the `riding hydrogen' refinement strategy, in which the positions of H atoms without a rotational degree of freedom are inferred from their neighboring heavy atoms. However, this does not address the issues related to poor data quality. Therefore, neutron structure determination often relies on the presence of an X-ray data set for joint X-ray and neutron (XN) refinement. In this approach, the X-ray data serve to compensate for the deficiencies of the neutron diffraction data by refining one model simultaneously against the X-ray and neutron data sets. To be applicable, it is assumed that both data sets are highly isomorphous, and preferably collected from the same crystals and at the same temperature. However, the approach has a number of limitations that are discussed in this work by comparing four separately re-refined neutron models. To address the limitations, a new method for joint XN refinement is introduced that optimizes two different models against the different data sets. This approach is tested using neutron models and data deposited in the Protein Data Bank. The efficacy of refining models with H atoms as riding or as individual atoms is also investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LTHT发布了新的文献求助10
刚刚
gjn发布了新的文献求助10
1秒前
tangz发布了新的文献求助10
1秒前
3秒前
sevenhill应助科研通管家采纳,获得10
4秒前
4秒前
吴彦祖应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
6260发布了新的文献求助10
4秒前
Murphy发布了新的文献求助10
4秒前
脑洞疼应助噜噜噜采纳,获得10
5秒前
勤恳平卉完成签到,获得积分10
6秒前
情怀应助傲娇问晴采纳,获得10
7秒前
cc完成签到,获得积分10
8秒前
jyt完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
11秒前
浮游应助qphys采纳,获得100
11秒前
11秒前
12秒前
12秒前
大帅哥发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
13秒前
light完成签到 ,获得积分10
14秒前
zzz发布了新的文献求助10
14秒前
wang发布了新的文献求助10
15秒前
hilm举报lucky求助涉嫌违规
15秒前
浮游应助张悦宇采纳,获得10
15秒前
15秒前
16秒前
Zaki发布了新的文献求助10
16秒前
16秒前
17秒前
Sissi完成签到,获得积分10
18秒前
辶车完成签到 ,获得积分10
19秒前
研友_VZG7GZ应助Lemon_ice采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465680
求助须知:如何正确求助?哪些是违规求助? 4570071
关于积分的说明 14321831
捐赠科研通 4496440
什么是DOI,文献DOI怎么找? 2463336
邀请新用户注册赠送积分活动 1452253
关于科研通互助平台的介绍 1427489