Improved joint X-ray and neutron refinement procedure in Phenix

中子衍射 中子 衍射 物理 结晶学 材料科学 化学 核物理学 光学
作者
Dorothée Liebschner,Pavel V. Afonine,Billy K. Poon,Nigel W. Moriarty,Paul D. Adams
标识
DOI:10.1107/s2059798323008914
摘要

Neutron diffraction is one of the three crystallographic techniques (X-ray, neutron and electron diffraction) used to determine the atomic structures of molecules. Its particular strengths derive from the fact that H (and D) atoms are strong neutron scatterers, meaning that their positions, and thus protonation states, can be derived from crystallographic maps. However, because of technical limitations and experimental obstacles, the quality of neutron diffraction data is typically much poorer (completeness, resolution and signal to noise) than that of X-ray diffraction data for the same sample. Further, refinement is more complex as it usually requires additional parameters to describe the H (and D) atoms. The increase in the number of parameters may be mitigated by using the `riding hydrogen' refinement strategy, in which the positions of H atoms without a rotational degree of freedom are inferred from their neighboring heavy atoms. However, this does not address the issues related to poor data quality. Therefore, neutron structure determination often relies on the presence of an X-ray data set for joint X-ray and neutron (XN) refinement. In this approach, the X-ray data serve to compensate for the deficiencies of the neutron diffraction data by refining one model simultaneously against the X-ray and neutron data sets. To be applicable, it is assumed that both data sets are highly isomorphous, and preferably collected from the same crystals and at the same temperature. However, the approach has a number of limitations that are discussed in this work by comparing four separately re-refined neutron models. To address the limitations, a new method for joint XN refinement is introduced that optimizes two different models against the different data sets. This approach is tested using neutron models and data deposited in the Protein Data Bank. The efficacy of refining models with H atoms as riding or as individual atoms is also investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩辕唯雪完成签到,获得积分10
刚刚
1秒前
2秒前
轩辕唯雪发布了新的文献求助10
2秒前
phoenix完成签到,获得积分10
3秒前
5秒前
5秒前
受伤的老头完成签到,获得积分10
7秒前
muxi暮夕发布了新的文献求助10
8秒前
8秒前
悦耳蜡烛完成签到,获得积分10
8秒前
意志所向发布了新的文献求助10
9秒前
Ranger_M发布了新的文献求助10
10秒前
丘比特应助鸡蛋布丁采纳,获得10
10秒前
袁大头发布了新的文献求助40
14秒前
可爱的函函应助令狐剑通采纳,获得10
15秒前
15秒前
15秒前
无限的FF发布了新的文献求助30
15秒前
16秒前
隐形曼青应助11采纳,获得10
16秒前
muxi暮夕完成签到,获得积分10
16秒前
18秒前
19秒前
贝贝贝发布了新的文献求助10
19秒前
炸天完成签到 ,获得积分10
20秒前
20秒前
顺利的若云完成签到,获得积分20
21秒前
wangyuan发布了新的文献求助10
23秒前
23秒前
受伤翠容发布了新的文献求助10
24秒前
24秒前
25秒前
SciGPT应助默默孱采纳,获得10
25秒前
26秒前
宜醉宜游宜睡应助dayoud采纳,获得10
28秒前
爱看文献的七七完成签到,获得积分10
29秒前
wen完成签到,获得积分10
29秒前
liniubi完成签到,获得积分10
30秒前
Singularity发布了新的文献求助10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139002
求助须知:如何正确求助?哪些是违规求助? 2789909
关于积分的说明 7793227
捐赠科研通 2446337
什么是DOI,文献DOI怎么找? 1301061
科研通“疑难数据库(出版商)”最低求助积分说明 626087
版权声明 601096