亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Avoiding common mistakes in meta‐analysis: Understanding the distinct roles of Q, I‐squared, tau‐squared, and the prediction interval in reporting heterogeneity

统计 荟萃分析 价值(数学) 统计的 计算机科学 置信区间 汇总统计 干预(咨询) 计量经济学 研究异质性 精算学 心理学 数学 医学 经济 精神科 内科学
作者
Michael Borenstein
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:15 (2): 354-368 被引量:82
标识
DOI:10.1002/jrsm.1678
摘要

Abstract In any meta‐analysis, it is critically important to report the dispersion in effects as well as the mean effect. If an intervention has a moderate clinical impact on average we also need to know if the impact is moderate for all relevant populations, or if it varies from trivial in some to major in others. Or indeed, if the intervention is beneficial in some cases but harmful in others. Researchers typically report a series of statistics such as the Q ‐value, the p ‐value, and I 2 , which are intended to address this issue. Often, they use these statistics to classify the heterogeneity as being low, moderate, or high and then use these classifications when considering the potential utility of the intervention. While this practice is ubiquitous, it is nevertheless incorrect. The statistics mentioned above do not actually tell us how much the effect size varies. Classifications of heterogeneity based on these statistics are uninformative at best, and often misleading. My goal in this paper is to explain what these statistics do tell us, and that none of them tells us how much the effect size varies. Then I will introduce the prediction interval, the statistic that does tell us how much the effect size varies, and that addresses the question we have in mind when we ask about heterogeneity. This paper is adapted from a chapter in “Common Mistakes in Meta‐Analysis and How to Avoid Them.” A free PDF of the book is available at https://www.Meta-Analysis.com/rsm .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
17秒前
ZBQ发布了新的文献求助10
22秒前
28秒前
852应助ZBQ采纳,获得10
30秒前
42秒前
Demi_Ming完成签到,获得积分10
57秒前
1分钟前
1分钟前
1分钟前
今后应助顶刊刺客cc采纳,获得10
1分钟前
Alimove发布了新的文献求助30
1分钟前
nah完成签到 ,获得积分10
1分钟前
1分钟前
深情安青应助Alimove采纳,获得30
1分钟前
1分钟前
紫焰完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
赘婿应助veggieg采纳,获得10
2分钟前
斯文败类应助veggieg采纳,获得10
2分钟前
Jasper应助veggieg采纳,获得10
2分钟前
善学以致用应助veggieg采纳,获得10
2分钟前
wanci应助veggieg采纳,获得10
2分钟前
丘比特应助veggieg采纳,获得10
2分钟前
无花果应助veggieg采纳,获得10
2分钟前
酷波er应助veggieg采纳,获得10
2分钟前
地表飞猪应助veggieg采纳,获得50
2分钟前
xq完成签到,获得积分10
2分钟前
2分钟前
几分之几完成签到 ,获得积分10
2分钟前
3分钟前
今后应助jkj采纳,获得10
3分钟前
3分钟前
丘比特应助xq采纳,获得10
3分钟前
3分钟前
77发布了新的文献求助10
3分钟前
3分钟前
messi发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488561
求助须知:如何正确求助?哪些是违规求助? 4587391
关于积分的说明 14413783
捐赠科研通 4518759
什么是DOI,文献DOI怎么找? 2476057
邀请新用户注册赠送积分活动 1461532
关于科研通互助平台的介绍 1434452