Avoiding common mistakes in meta‐analysis: Understanding the distinct roles of Q, I‐squared, tau‐squared, and the prediction interval in reporting heterogeneity

统计 荟萃分析 价值(数学) 统计的 计算机科学 置信区间 汇总统计 干预(咨询) 计量经济学 研究异质性 精算学 心理学 数学 医学 经济 精神科 内科学
作者
Michael Borenstein
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:15 (2): 354-368 被引量:27
标识
DOI:10.1002/jrsm.1678
摘要

Abstract In any meta‐analysis, it is critically important to report the dispersion in effects as well as the mean effect. If an intervention has a moderate clinical impact on average we also need to know if the impact is moderate for all relevant populations, or if it varies from trivial in some to major in others. Or indeed, if the intervention is beneficial in some cases but harmful in others. Researchers typically report a series of statistics such as the Q ‐value, the p ‐value, and I 2 , which are intended to address this issue. Often, they use these statistics to classify the heterogeneity as being low, moderate, or high and then use these classifications when considering the potential utility of the intervention. While this practice is ubiquitous, it is nevertheless incorrect. The statistics mentioned above do not actually tell us how much the effect size varies. Classifications of heterogeneity based on these statistics are uninformative at best, and often misleading. My goal in this paper is to explain what these statistics do tell us, and that none of them tells us how much the effect size varies. Then I will introduce the prediction interval, the statistic that does tell us how much the effect size varies, and that addresses the question we have in mind when we ask about heterogeneity. This paper is adapted from a chapter in “Common Mistakes in Meta‐Analysis and How to Avoid Them.” A free PDF of the book is available at https://www.Meta-Analysis.com/rsm .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
景行行止发布了新的文献求助10
刚刚
Jing完成签到,获得积分10
刚刚
科研顺利发布了新的文献求助10
1秒前
汉堡包应助虚幻盼晴采纳,获得10
1秒前
搞怪柔完成签到,获得积分10
1秒前
上岸上岸上岸完成签到,获得积分20
2秒前
泽恩呗呗发布了新的文献求助10
2秒前
整齐硬币完成签到,获得积分10
2秒前
吹梦西洲发布了新的文献求助10
3秒前
Owen应助VV采纳,获得10
3秒前
精明一寡发布了新的文献求助10
3秒前
4秒前
斯寜应助秋子采纳,获得10
4秒前
4秒前
1234sxcv发布了新的文献求助10
4秒前
dyyisash完成签到 ,获得积分10
5秒前
5秒前
ddd完成签到,获得积分10
5秒前
凌云发布了新的文献求助10
5秒前
6秒前
YELLOW完成签到,获得积分10
7秒前
思源应助吴世宇采纳,获得10
7秒前
科研通AI5应助bling采纳,获得30
7秒前
wjx发布了新的文献求助10
8秒前
welbeck应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
9秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
thefan发布了新的文献求助10
10秒前
10秒前
yaoaoaoao发布了新的文献求助10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734838
求助须知:如何正确求助?哪些是违规求助? 3278737
关于积分的说明 10011382
捐赠科研通 2995434
什么是DOI,文献DOI怎么找? 1643431
邀请新用户注册赠送积分活动 781171
科研通“疑难数据库(出版商)”最低求助积分说明 749290