Avoiding common mistakes in meta‐analysis: Understanding the distinct roles of Q, I‐squared, tau‐squared, and the prediction interval in reporting heterogeneity

统计 荟萃分析 价值(数学) 统计的 计算机科学 置信区间 汇总统计 干预(咨询) 计量经济学 研究异质性 精算学 心理学 数学 医学 经济 精神科 内科学
作者
Michael Borenstein
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:15 (2): 354-368 被引量:27
标识
DOI:10.1002/jrsm.1678
摘要

Abstract In any meta‐analysis, it is critically important to report the dispersion in effects as well as the mean effect. If an intervention has a moderate clinical impact on average we also need to know if the impact is moderate for all relevant populations, or if it varies from trivial in some to major in others. Or indeed, if the intervention is beneficial in some cases but harmful in others. Researchers typically report a series of statistics such as the Q ‐value, the p ‐value, and I 2 , which are intended to address this issue. Often, they use these statistics to classify the heterogeneity as being low, moderate, or high and then use these classifications when considering the potential utility of the intervention. While this practice is ubiquitous, it is nevertheless incorrect. The statistics mentioned above do not actually tell us how much the effect size varies. Classifications of heterogeneity based on these statistics are uninformative at best, and often misleading. My goal in this paper is to explain what these statistics do tell us, and that none of them tells us how much the effect size varies. Then I will introduce the prediction interval, the statistic that does tell us how much the effect size varies, and that addresses the question we have in mind when we ask about heterogeneity. This paper is adapted from a chapter in “Common Mistakes in Meta‐Analysis and How to Avoid Them.” A free PDF of the book is available at https://www.Meta-Analysis.com/rsm .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ava应助跳跃小馒头采纳,获得10
刚刚
崩坏的幻想完成签到,获得积分10
1秒前
1秒前
ColdSpring完成签到,获得积分10
1秒前
2秒前
鑫搭发布了新的文献求助10
2秒前
zouyan233发布了新的文献求助30
2秒前
丘比特应助文静的人雄采纳,获得10
2秒前
啦啦啦123完成签到,获得积分10
2秒前
3秒前
自由从筠完成签到,获得积分10
3秒前
4秒前
t421788416发布了新的文献求助10
4秒前
序与海完成签到,获得积分10
4秒前
xdd完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
坚定的雁完成签到 ,获得积分10
6秒前
细心妙旋发布了新的文献求助10
6秒前
泊海三千完成签到,获得积分10
6秒前
bo完成签到,获得积分20
6秒前
科研小菜发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
小一完成签到,获得积分10
8秒前
8秒前
张娟娟发布了新的文献求助10
9秒前
之星君发布了新的文献求助10
9秒前
小超超发布了新的文献求助10
10秒前
我是老大应助qidada采纳,获得10
10秒前
phil完成签到,获得积分10
10秒前
chengya完成签到,获得积分10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得30
11秒前
一丢丢完成签到,获得积分10
11秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3435213
求助须知:如何正确求助?哪些是违规求助? 3032626
关于积分的说明 8946949
捐赠科研通 2720600
什么是DOI,文献DOI怎么找? 1492236
科研通“疑难数据库(出版商)”最低求助积分说明 689780
邀请新用户注册赠送积分活动 685947