清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Avoiding common mistakes in meta‐analysis: Understanding the distinct roles of Q, I‐squared, tau‐squared, and the prediction interval in reporting heterogeneity

统计 荟萃分析 价值(数学) 统计的 计算机科学 置信区间 汇总统计 干预(咨询) 计量经济学 研究异质性 精算学 心理学 数学 医学 经济 精神科 内科学
作者
Michael Borenstein
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:15 (2): 354-368 被引量:82
标识
DOI:10.1002/jrsm.1678
摘要

Abstract In any meta‐analysis, it is critically important to report the dispersion in effects as well as the mean effect. If an intervention has a moderate clinical impact on average we also need to know if the impact is moderate for all relevant populations, or if it varies from trivial in some to major in others. Or indeed, if the intervention is beneficial in some cases but harmful in others. Researchers typically report a series of statistics such as the Q ‐value, the p ‐value, and I 2 , which are intended to address this issue. Often, they use these statistics to classify the heterogeneity as being low, moderate, or high and then use these classifications when considering the potential utility of the intervention. While this practice is ubiquitous, it is nevertheless incorrect. The statistics mentioned above do not actually tell us how much the effect size varies. Classifications of heterogeneity based on these statistics are uninformative at best, and often misleading. My goal in this paper is to explain what these statistics do tell us, and that none of them tells us how much the effect size varies. Then I will introduce the prediction interval, the statistic that does tell us how much the effect size varies, and that addresses the question we have in mind when we ask about heterogeneity. This paper is adapted from a chapter in “Common Mistakes in Meta‐Analysis and How to Avoid Them.” A free PDF of the book is available at https://www.Meta-Analysis.com/rsm .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tesia完成签到 ,获得积分10
5秒前
25秒前
wyz完成签到 ,获得积分10
40秒前
42秒前
1分钟前
月军完成签到,获得积分10
1分钟前
呆萌初南完成签到 ,获得积分10
1分钟前
蝎子莱莱xth完成签到,获得积分10
1分钟前
wakawaka完成签到 ,获得积分10
1分钟前
氢锂钠钾铷铯钫完成签到,获得积分10
1分钟前
Square完成签到,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
2分钟前
2041完成签到,获得积分10
2分钟前
hhuajw应助无情的琳采纳,获得20
2分钟前
迷茫的一代完成签到,获得积分10
2分钟前
2分钟前
lucky完成签到 ,获得积分10
2分钟前
2分钟前
jason完成签到 ,获得积分10
3分钟前
wk完成签到 ,获得积分10
3分钟前
重庆森林完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
Jasper应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
酷波er应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
科研通AI6应助科研通管家采纳,获得10
3分钟前
咚咚发布了新的文献求助10
3分钟前
4分钟前
斯文败类应助读书的时候采纳,获得10
4分钟前
咚咚完成签到,获得积分10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
Ägyptische Geschichte der 21.–30. Dynastie 1520
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739903
求助须知:如何正确求助?哪些是违规求助? 5391231
关于积分的说明 15340093
捐赠科研通 4882224
什么是DOI,文献DOI怎么找? 2624274
邀请新用户注册赠送积分活动 1572976
关于科研通互助平台的介绍 1529844