生成语法
计算机科学
背景(考古学)
药品
药物与药物的相互作用
一般化
生成模型
关系抽取
萃取(化学)
秩(图论)
人工智能
机器学习
任务(项目管理)
自然语言处理
信息抽取
药理学
化学
医学
数学
生物
工程类
色谱法
古生物学
数学分析
系统工程
组合数学
作者
Haotian Hu,Alex J. Yang,Sanhong Deng,Dongbo Wang,Min Song,Si Shen
摘要
ABSTRACT Drug–Drug Interaction (DDI) may affect the activity and efficacy of drugs, potentially leading to diminished therapeutic effect or even serious side effects. Therefore, automatic recognition of drug entities and relations involved in DDI is of great significance for pharmaceutical and medical care. In this paper, we propose a generative DDI triplets extraction framework based on Large Language Models (LLMs). We comprehensively apply various training methods, such as In‐context learning, Instruction‐tuning, and Task‐tuning, to investigate the biomedical information extraction capabilities of GPT‐3, OPT, and LLaMA. We also introduce Low‐Rank Adaptation (LoRA) technology to significantly reduce trainable parameters. The proposed method achieves satisfactory results in DDI triplet extraction, and demonstrates strong generalization ability on similar corpus.
科研通智能强力驱动
Strongly Powered by AbleSci AI