Contrastive Personalized Exercise Recommendation With Reinforcement Learning

强化学习 计算机科学 人工智能 机器学习 推荐系统 任务(项目管理) 过程(计算) 个性化学习 领域(数学) 教学方法 合作学习 开放式学习 数学教育 数学 管理 纯数学 经济 操作系统
作者
Siyu Wu,Jun Wang,Wei Zhang
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 691-703 被引量:2
标识
DOI:10.1109/tlt.2023.3326449
摘要

Personalized exercise recommendation is a challenging task in the field of artificial intelligence in education due to several problems. First, the mainstream approaches focus more on the exercises that students have not mastered, while overlooking their long-term needs during the learning process. Second, it is difficult to capture students' knowledge states caused by sparse interactions with exercises. Moreover, most recommendation methods are dedicated to the performance of the recommendation w.r.t. accuracy, disregarding the students' learning ability. We introduce a new framework called contrastive personalized exercise recommendation with reinforcement learning (RCL4ER) to tackle these issues. Our framework augments the standard recommendation model with an output layer of self-supervised learning and reinforcement learning. The reinforcement allows the supervised layer to focus on specific rewards, acting as a regularizer. The self-supervised layer provides a powerful signal for parameter updating. Three data augmentation methods are used to provide additional data, which are leveraged to conduct contrastive learning and incorporated into reinforcement learning as supplementary information. In addition, we adopt a trained deep knowledge tracing model to capture the changes in students' knowledge states, so as to establish a dynamic reward mechanism. Experiments of our framework based on four recommendation backbones on several public datasets demonstrate the effectiveness of our RCL4ER, which successfully promotes students' capacity and improves the recommendation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助hhh采纳,获得10
刚刚
1秒前
1秒前
22发布了新的文献求助40
1秒前
哈哈完成签到,获得积分10
2秒前
2秒前
3秒前
KK完成签到,获得积分10
4秒前
17发布了新的文献求助10
5秒前
东东完成签到 ,获得积分10
6秒前
7秒前
秦路发布了新的文献求助10
8秒前
超级日光完成签到 ,获得积分20
9秒前
9秒前
9秒前
10秒前
Xcentimeter完成签到,获得积分10
11秒前
12秒前
阳阳发布了新的文献求助10
12秒前
hxn完成签到,获得积分10
12秒前
爆米花应助Lion采纳,获得10
13秒前
jackten发布了新的文献求助10
15秒前
W_G发布了新的文献求助10
16秒前
徐瑶瑶发布了新的文献求助10
16秒前
乐一李完成签到,获得积分10
16秒前
深情安青应助刘小波采纳,获得10
16秒前
17秒前
17秒前
liu完成签到,获得积分10
20秒前
我是老大应助17采纳,获得10
20秒前
天天快乐应助claire采纳,获得10
20秒前
21秒前
汉堡包应助俊逸的平卉采纳,获得50
21秒前
任性雪糕完成签到 ,获得积分10
22秒前
22秒前
Lion完成签到,获得积分20
22秒前
研友_VZG7GZ应助徐瑶瑶采纳,获得10
23秒前
24秒前
25秒前
Lion发布了新的文献求助10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310659
求助须知:如何正确求助?哪些是违规求助? 2943412
关于积分的说明 8515067
捐赠科研通 2618777
什么是DOI,文献DOI怎么找? 1431401
科研通“疑难数据库(出版商)”最低求助积分说明 664468
邀请新用户注册赠送积分活动 649643