Contrastive Personalized Exercise Recommendation With Reinforcement Learning

强化学习 计算机科学 人工智能 机器学习 推荐系统 任务(项目管理) 过程(计算) 个性化学习 领域(数学) 教学方法 合作学习 开放式学习 数学教育 操作系统 数学 经济 管理 纯数学
作者
Siyu Wu,Jun Wang,Wei Zhang
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 691-703 被引量:4
标识
DOI:10.1109/tlt.2023.3326449
摘要

Personalized exercise recommendation is a challenging task in the field of artificial intelligence in education due to several problems. First, the mainstream approaches focus more on the exercises that students have not mastered, while overlooking their long-term needs during the learning process. Second, it is difficult to capture students' knowledge states caused by sparse interactions with exercises. Moreover, most recommendation methods are dedicated to the performance of the recommendation w.r.t. accuracy, disregarding the students' learning ability. We introduce a new framework called contrastive personalized exercise recommendation with reinforcement learning (RCL4ER) to tackle these issues. Our framework augments the standard recommendation model with an output layer of self-supervised learning and reinforcement learning. The reinforcement allows the supervised layer to focus on specific rewards, acting as a regularizer. The self-supervised layer provides a powerful signal for parameter updating. Three data augmentation methods are used to provide additional data, which are leveraged to conduct contrastive learning and incorporated into reinforcement learning as supplementary information. In addition, we adopt a trained deep knowledge tracing model to capture the changes in students' knowledge states, so as to establish a dynamic reward mechanism. Experiments of our framework based on four recommendation backbones on several public datasets demonstrate the effectiveness of our RCL4ER, which successfully promotes students' capacity and improves the recommendation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
ZhengSyHoe完成签到,获得积分10
1秒前
Shnusinap完成签到,获得积分20
1秒前
2秒前
脑洞疼应助Zzzz采纳,获得10
2秒前
3秒前
4秒前
大气香寒关注了科研通微信公众号
4秒前
帅气白发布了新的文献求助10
4秒前
4秒前
周老八发布了新的文献求助10
5秒前
笑傲飞月完成签到,获得积分10
5秒前
乌梅柿发布了新的文献求助10
5秒前
XIEMIN发布了新的文献求助10
6秒前
在水一方应助优雅的薯片采纳,获得10
6秒前
高兴孤云发布了新的文献求助10
7秒前
kk摆烂完成签到,获得积分10
7秒前
7秒前
听雨眠发布了新的文献求助10
7秒前
8秒前
SciGPT应助周老八采纳,获得10
9秒前
小蘑菇应助liushuyu采纳,获得10
9秒前
一颗西瓜完成签到 ,获得积分10
9秒前
Roxxane发布了新的文献求助10
10秒前
11秒前
大个应助源源元采纳,获得10
11秒前
安小红完成签到,获得积分10
11秒前
磨人的老妖精完成签到,获得积分10
12秒前
lemon发布了新的文献求助10
12秒前
hhan完成签到,获得积分10
13秒前
hauru完成签到,获得积分20
13秒前
14秒前
小机灵鬼完成签到,获得积分20
14秒前
14秒前
15秒前
卜之玉完成签到 ,获得积分10
15秒前
15秒前
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Treatise on Geochemistry 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954947
求助须知:如何正确求助?哪些是违规求助? 3501093
关于积分的说明 11101851
捐赠科研通 3231470
什么是DOI,文献DOI怎么找? 1786438
邀请新用户注册赠送积分活动 870058
科研通“疑难数据库(出版商)”最低求助积分说明 801798