Contrastive Personalized Exercise Recommendation With Reinforcement Learning

强化学习 计算机科学 人工智能 机器学习 推荐系统 任务(项目管理) 过程(计算) 个性化学习 领域(数学) 教学方法 合作学习 开放式学习 数学教育 数学 管理 纯数学 经济 操作系统
作者
Siyu Wu,Jun Wang,Wei Zhang
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 691-703 被引量:7
标识
DOI:10.1109/tlt.2023.3326449
摘要

Personalized exercise recommendation is a challenging task in the field of artificial intelligence in education due to several problems. First, the mainstream approaches focus more on the exercises that students have not mastered, while overlooking their long-term needs during the learning process. Second, it is difficult to capture students' knowledge states caused by sparse interactions with exercises. Moreover, most recommendation methods are dedicated to the performance of the recommendation w.r.t. accuracy, disregarding the students' learning ability. We introduce a new framework called contrastive personalized exercise recommendation with reinforcement learning (RCL4ER) to tackle these issues. Our framework augments the standard recommendation model with an output layer of self-supervised learning and reinforcement learning. The reinforcement allows the supervised layer to focus on specific rewards, acting as a regularizer. The self-supervised layer provides a powerful signal for parameter updating. Three data augmentation methods are used to provide additional data, which are leveraged to conduct contrastive learning and incorporated into reinforcement learning as supplementary information. In addition, we adopt a trained deep knowledge tracing model to capture the changes in students' knowledge states, so as to establish a dynamic reward mechanism. Experiments of our framework based on four recommendation backbones on several public datasets demonstrate the effectiveness of our RCL4ER, which successfully promotes students' capacity and improves the recommendation performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
欢愉调完成签到 ,获得积分10
1秒前
彭于晏应助20251126采纳,获得10
2秒前
八斗智狐完成签到,获得积分10
2秒前
2秒前
3秒前
鱼儿会飞发布了新的文献求助10
3秒前
4秒前
认真平蝶完成签到 ,获得积分10
4秒前
6秒前
CipherSage应助无问西东采纳,获得10
6秒前
7秒前
qian完成签到 ,获得积分10
7秒前
hyc发布了新的文献求助10
8秒前
斯文败类应助yes采纳,获得10
8秒前
8秒前
李圣诞发布了新的文献求助10
9秒前
酷波er应助耍酷如曼采纳,获得10
10秒前
Yue完成签到 ,获得积分10
10秒前
如意勒完成签到 ,获得积分10
10秒前
figure发布了新的文献求助10
12秒前
zhanggray发布了新的文献求助10
13秒前
13秒前
14秒前
Ava应助wh采纳,获得10
18秒前
无问西东发布了新的文献求助10
18秒前
王大力发布了新的文献求助10
20秒前
21秒前
alpv完成签到,获得积分10
21秒前
21秒前
雪碧完成签到,获得积分10
23秒前
allsan发布了新的文献求助10
25秒前
26秒前
Willing发布了新的文献求助10
26秒前
27秒前
30秒前
jie完成签到 ,获得积分10
31秒前
上官若男应助苗雅宁采纳,获得30
32秒前
sunshine发布了新的文献求助10
32秒前
bkagyin应助积极的猎豹采纳,获得10
33秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342693
求助须知:如何正确求助?哪些是违规求助? 4478514
关于积分的说明 13939615
捐赠科研通 4375193
什么是DOI,文献DOI怎么找? 2404016
邀请新用户注册赠送积分活动 1396569
关于科研通互助平台的介绍 1368768