生物炭
光催化
纳米复合材料
双酚A
光降解
吸附
化学工程
锌
降级(电信)
材料科学
纳米颗粒
热解
核化学
化学
催化作用
纳米技术
有机化学
冶金
复合材料
电信
环氧树脂
计算机科学
工程类
作者
Mohanapriya Velumani,Sakthivel Rajamohan,Ashok Pandey,Nguyen Dang Khoa Pham,Van Giao Nguyen,Anh Tuan Hoang
标识
DOI:10.1016/j.scitotenv.2023.167896
摘要
The growing concern over the presence of pollutants like Bisphenol A (BPA) in water sources has led to the growth of novel treatment technologies for its removal. This research work investigates the development of a novel biochar-metal oxide nanocomposite derived from tannery sludge and Zinc oxide (ZnO) nanoparticles for the photodegradation of BPA. The biochar was obtained by pyrolysis process, followed by impregnation of ZnO nanoparticles using a hydrothermal technique. The critical properties of as-prepared nanocomposite were evaluated by FT-IR, BET surface area, XRD, FE-SEM, HR-TEM, XPS, PL, EPR, and Raman Spectroscopy. In addition, the photocatalytic activity of nanocomposites was evaluated by measuring the degradation of BPA in visible light irradiation. The outcomes revealed that ZnO-loaded chemically activated biochar exhibited higher photocatalytic activity for the degradation of BPA than the pristine and non-chemically activated biochar. At pH 5, 0.2 g/L of photocatalyst dosage, 20 ppm of initial pollutant concentration, and 150 min of contact time, the maximum degradation efficiency of BPA was observed as 94.50 %. Also, nanocomposites showed good stability and reusability, with only a slight decrease in photocatalytic activity after multiple cycles of use. More importantly, the degradation mechanisms of BPA using as-prepared nanocomposites were analyzed in detail, indicating that the observed photocatalytic activity could be attributed to the synergistic effect between the biochar and ZnO, which provided a large surface area for the adsorption of BPA and promoted the generation of reactive oxygen species for its degradation. Overall, this study highlighted the potential of using nanocomposites from tannery sludge-derived biochar and ZnO nanoparticles for the degradation of BPA from polluted water sources using a photocatalytic process toward the dual environmental benefits.
科研通智能强力驱动
Strongly Powered by AbleSci AI