已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

[Biomarkers associated with severity classification of asthma identified by comprehensive bioinformatics analysis].

小桶 哮喘 基因 计算生物学 基因表达 生物信息学 基因本体论 生物 医学 内科学 遗传学
作者
Zhao Xiao,Xinfeng Yan,Fĕi Li,Kang-Wen Xiao,G H Liu
出处
期刊:PubMed 卷期号:57 (9): 1458-1468
标识
DOI:10.3760/cma.j.cn112150-20230301-00165
摘要

Using an integrated bioinformatics approach to find novel biomarkers that can predict asthma severity. From June 2022 to December 2022, this clinical medical study was conducted and completed in the Department of Allergy, Zhongnan Hospital of Wuhan University. The gene chip dataset GSE43696 was screened and downloaded from the high-throughput Gene Expression Omnibus (GEO) database, and the gene chip data preprocessing was completed using package "affy" in R and "rma" algorithm in turn. Use the the "edgeR" and "limma" packages to screen out the differentially expressed genes (DEGs) between normal controls, mild to moderate asthma patients and severe asthma patients, and then use the "clusterProfiler" package to perform GO enrichment analysis and KEGG pathway enrichment analysis of DEGs, finally use the STRING website to construct a protein-protein interaction (PPI) network of DEGs to further screen key genes. Using the R language "WGCNA" package, the weighted gene co-expression network analysis (WGCNA) was performed on the dataset GSE43696, and the modules significantly related to the severity of asthma were screened out, then the hub genes were obtained by intersecting the WGCNA analysis results with the DEGs screened by PPI. Datasets GSE43696 and GSE63142 were used to verify the expression of hub genes, and the diagnostic value was evaluated according to the ROC curve, then the potential function of hub genes in dataset GSE43696 was further clarified by gene set enrichment analysis (GSEA). The results showed that a total of 251 DEGs were screened, including 39 in the normal group and mild to moderate asthma group, 178 in the normal group and severe asthma group, and 34 in the mild to moderate asthma group and severe asthma group, mainly involved in biological processes such as response to toxic substance, response to oxidative stress, extracellular structure organization, extracellular matrix organization. Two modules significantly correlated with asthma severity were screened out (red module, P=7e-6, r=0.43; pink module, P=5e-8, r=-0.51), and finally six hub genes were obtained, including B3GNT6, CEACAM5, CCK, ERBB2, CSH1 and DPPA5. The comparison of gene expression levels and ROC curve analysis of datasets GSE43696 and GSE63142 further verified the six hub genes, which may associated with o-glycan biosynthesis, alpha linolenic acid metabolism, linoleic acid metabolism, pentose and glucoronate interconversions. In conclusion, through a variety of bioinformatics analysis methods, this study identified six hub genes significantly related to the severity of asthma, which potentially provided a new direction for the prediction and targeted therapy of asthma.本研究利用综合生物信息学方法寻找能够预测哮喘严重程度的新生物标志物。于2022年6至12月,在武汉大学中南医院过敏反应科开展并完成该临床医学研究。从高通量基因表达(Gene Expression Omnibus,GEO)数据库中筛选并下载基因芯片数据集GSE43696,使用R语言“affy”包和“rma”算法完成基因芯片数据预处理。利用“edgeR”包和“limma”包筛选出正常对照者、轻中度哮喘患者和重度哮喘患者两两之间的差异表达基因(differentially expressed genes,DEGs),然后用“clusterProfiler”包对差异表达基因进行GO功能富集分析和KEGG通路富集分析,最后用STRING网站构建差异表达基因的蛋白-蛋白互作(protein-protein interaction,PPI)网络,进一步筛选差异表达基因。使用R语言“WGCNA”包对数据集GSE43696进行加权基因共表达网络分析(weighted gene co-expression network analysis,WGCNA),筛选出与哮喘严重程度显著相关的模块,将WGCNA分析结果与PPI筛选的差异表达基因取交集得到关键(hub)基因。利用数据集GSE43696和GSE63142对hub基因表达量进行验证,依据ROC曲线评估诊断价值,并通过基因集富集分析(gene set enrichment analysis,GSEA)进一步明确数据集GSE43696中hub基因的潜在功能。结果显示,共筛选出251个DEGs,其中正常组和轻中度哮喘组39个,正常组和重度哮喘组178个,轻中度哮喘组和重度哮喘组34个,主要参与对有毒物质的反应、对氧化应激的反应、细胞外结构组织、细胞外基质组织等生物过程。筛选出两个与哮喘严重程度显著相关的模块(red模块,P=7e-6,r=0.43;pink模块,P=5e-8,r=-0.51),最终得到6个hub基因,包括B3GNT6、CEACAM5、CCK、ERBB2、CSH1和DPPA5。通过数据集GSE43696和GSE63142的基因表达水平比较和ROC曲线分析进一步验证了这6个hub基因,可能与o-聚糖生物合成、α-亚麻酸代谢、亚油酸代谢和戊糖葡萄糖酸的相互转化等过程相关。综上,通过多种生物信息学分析方法,本研究鉴定出与哮喘严重程度显著相关的6个hub基因,为哮喘的病情预测和靶向治疗提供了可能的新方向。.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
吉吉国王的跟班完成签到 ,获得积分10
刚刚
拉长的迎曼完成签到 ,获得积分10
1秒前
徐志豪完成签到 ,获得积分10
3秒前
柔之发布了新的文献求助10
4秒前
兜兜完成签到 ,获得积分10
10秒前
shaoshao86完成签到,获得积分10
13秒前
Hvginn发布了新的文献求助10
14秒前
川荣李奈完成签到 ,获得积分10
16秒前
余生完成签到 ,获得积分10
19秒前
20秒前
久顾南川完成签到 ,获得积分10
21秒前
慕青应助白华苍松采纳,获得10
26秒前
00hello00发布了新的文献求助10
26秒前
Cope完成签到 ,获得积分10
26秒前
ljx完成签到 ,获得积分10
27秒前
FOD完成签到 ,获得积分10
29秒前
zcbb完成签到,获得积分10
32秒前
Bond完成签到 ,获得积分10
33秒前
34秒前
Owen应助科研通管家采纳,获得10
35秒前
所所应助科研通管家采纳,获得30
35秒前
领导范儿应助科研通管家采纳,获得10
35秒前
Honor完成签到 ,获得积分10
37秒前
tt完成签到 ,获得积分10
38秒前
喬老師完成签到,获得积分10
41秒前
落叶捎来讯息完成签到 ,获得积分10
42秒前
上官老师完成签到 ,获得积分10
43秒前
45秒前
FashionBoy应助柔弱绮兰采纳,获得10
45秒前
47秒前
王某完成签到 ,获得积分10
51秒前
白英完成签到,获得积分10
51秒前
ssdsfc发布了新的文献求助10
51秒前
51秒前
花陵完成签到 ,获得积分10
51秒前
hy完成签到 ,获得积分10
51秒前
YukiXu完成签到 ,获得积分10
52秒前
唐若冰完成签到,获得积分10
53秒前
55秒前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
The recovery-stress questionnaires : user manual 600
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5854750
求助须知:如何正确求助?哪些是违规求助? 6300369
关于积分的说明 15632510
捐赠科研通 4969929
什么是DOI,文献DOI怎么找? 2680171
邀请新用户注册赠送积分活动 1624210
关于科研通互助平台的介绍 1580944

今日热心研友

注:热心度 = 本日应助数 + 本日被采纳获取积分÷10