[Biomarkers associated with severity classification of asthma identified by comprehensive bioinformatics analysis].

小桶 哮喘 基因 计算生物学 基因表达 生物信息学 基因本体论 生物 医学 内科学 遗传学
作者
Zhao Xiao,Xinfeng Yan,Fĕi Li,Kang-Wen Xiao,G H Liu
出处
期刊:PubMed 卷期号:57 (9): 1458-1468
标识
DOI:10.3760/cma.j.cn112150-20230301-00165
摘要

Using an integrated bioinformatics approach to find novel biomarkers that can predict asthma severity. From June 2022 to December 2022, this clinical medical study was conducted and completed in the Department of Allergy, Zhongnan Hospital of Wuhan University. The gene chip dataset GSE43696 was screened and downloaded from the high-throughput Gene Expression Omnibus (GEO) database, and the gene chip data preprocessing was completed using package "affy" in R and "rma" algorithm in turn. Use the the "edgeR" and "limma" packages to screen out the differentially expressed genes (DEGs) between normal controls, mild to moderate asthma patients and severe asthma patients, and then use the "clusterProfiler" package to perform GO enrichment analysis and KEGG pathway enrichment analysis of DEGs, finally use the STRING website to construct a protein-protein interaction (PPI) network of DEGs to further screen key genes. Using the R language "WGCNA" package, the weighted gene co-expression network analysis (WGCNA) was performed on the dataset GSE43696, and the modules significantly related to the severity of asthma were screened out, then the hub genes were obtained by intersecting the WGCNA analysis results with the DEGs screened by PPI. Datasets GSE43696 and GSE63142 were used to verify the expression of hub genes, and the diagnostic value was evaluated according to the ROC curve, then the potential function of hub genes in dataset GSE43696 was further clarified by gene set enrichment analysis (GSEA). The results showed that a total of 251 DEGs were screened, including 39 in the normal group and mild to moderate asthma group, 178 in the normal group and severe asthma group, and 34 in the mild to moderate asthma group and severe asthma group, mainly involved in biological processes such as response to toxic substance, response to oxidative stress, extracellular structure organization, extracellular matrix organization. Two modules significantly correlated with asthma severity were screened out (red module, P=7e-6, r=0.43; pink module, P=5e-8, r=-0.51), and finally six hub genes were obtained, including B3GNT6, CEACAM5, CCK, ERBB2, CSH1 and DPPA5. The comparison of gene expression levels and ROC curve analysis of datasets GSE43696 and GSE63142 further verified the six hub genes, which may associated with o-glycan biosynthesis, alpha linolenic acid metabolism, linoleic acid metabolism, pentose and glucoronate interconversions. In conclusion, through a variety of bioinformatics analysis methods, this study identified six hub genes significantly related to the severity of asthma, which potentially provided a new direction for the prediction and targeted therapy of asthma.本研究利用综合生物信息学方法寻找能够预测哮喘严重程度的新生物标志物。于2022年6至12月,在武汉大学中南医院过敏反应科开展并完成该临床医学研究。从高通量基因表达(Gene Expression Omnibus,GEO)数据库中筛选并下载基因芯片数据集GSE43696,使用R语言“affy”包和“rma”算法完成基因芯片数据预处理。利用“edgeR”包和“limma”包筛选出正常对照者、轻中度哮喘患者和重度哮喘患者两两之间的差异表达基因(differentially expressed genes,DEGs),然后用“clusterProfiler”包对差异表达基因进行GO功能富集分析和KEGG通路富集分析,最后用STRING网站构建差异表达基因的蛋白-蛋白互作(protein-protein interaction,PPI)网络,进一步筛选差异表达基因。使用R语言“WGCNA”包对数据集GSE43696进行加权基因共表达网络分析(weighted gene co-expression network analysis,WGCNA),筛选出与哮喘严重程度显著相关的模块,将WGCNA分析结果与PPI筛选的差异表达基因取交集得到关键(hub)基因。利用数据集GSE43696和GSE63142对hub基因表达量进行验证,依据ROC曲线评估诊断价值,并通过基因集富集分析(gene set enrichment analysis,GSEA)进一步明确数据集GSE43696中hub基因的潜在功能。结果显示,共筛选出251个DEGs,其中正常组和轻中度哮喘组39个,正常组和重度哮喘组178个,轻中度哮喘组和重度哮喘组34个,主要参与对有毒物质的反应、对氧化应激的反应、细胞外结构组织、细胞外基质组织等生物过程。筛选出两个与哮喘严重程度显著相关的模块(red模块,P=7e-6,r=0.43;pink模块,P=5e-8,r=-0.51),最终得到6个hub基因,包括B3GNT6、CEACAM5、CCK、ERBB2、CSH1和DPPA5。通过数据集GSE43696和GSE63142的基因表达水平比较和ROC曲线分析进一步验证了这6个hub基因,可能与o-聚糖生物合成、α-亚麻酸代谢、亚油酸代谢和戊糖葡萄糖酸的相互转化等过程相关。综上,通过多种生物信息学分析方法,本研究鉴定出与哮喘严重程度显著相关的6个hub基因,为哮喘的病情预测和靶向治疗提供了可能的新方向。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xqh完成签到,获得积分10
2秒前
拼搏的帽子完成签到 ,获得积分10
3秒前
luffy完成签到 ,获得积分10
4秒前
wang1完成签到 ,获得积分10
6秒前
天天快乐应助元明清采纳,获得30
8秒前
lmq完成签到 ,获得积分10
9秒前
yanglinhai完成签到 ,获得积分10
11秒前
ZS完成签到,获得积分10
12秒前
Lei发布了新的文献求助10
12秒前
头发乱了发布了新的文献求助20
17秒前
Panini完成签到 ,获得积分10
17秒前
ttqql完成签到,获得积分10
17秒前
sunnyqqz完成签到,获得积分10
20秒前
23秒前
幽默赛君完成签到 ,获得积分10
23秒前
淡然以柳完成签到 ,获得积分10
23秒前
Jasper应助重庆森林采纳,获得10
27秒前
Lei完成签到,获得积分10
29秒前
酷炫觅双完成签到 ,获得积分10
30秒前
Edou完成签到,获得积分10
31秒前
烟火会翻滚完成签到,获得积分10
31秒前
42秒前
45秒前
June完成签到,获得积分10
47秒前
xz发布了新的文献求助10
49秒前
sll完成签到 ,获得积分10
51秒前
zx完成签到 ,获得积分10
51秒前
t铁核桃1985完成签到 ,获得积分10
53秒前
xzy998应助科研通管家采纳,获得10
58秒前
万能图书馆应助科研通管家采纳,获得150
58秒前
科目三应助科研通管家采纳,获得10
58秒前
完美世界应助科研通管家采纳,获得10
58秒前
科研通AI2S应助科研通管家采纳,获得10
58秒前
丘比特应助科研通管家采纳,获得10
58秒前
58秒前
MC123完成签到,获得积分10
59秒前
美好灵寒完成签到 ,获得积分10
59秒前
ESC惠子子子子子完成签到 ,获得积分10
1分钟前
着急的果汁完成签到 ,获得积分10
1分钟前
zz完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5188071
求助须知:如何正确求助?哪些是违规求助? 4372504
关于积分的说明 13613427
捐赠科研通 4225688
什么是DOI,文献DOI怎么找? 2317866
邀请新用户注册赠送积分活动 1316437
关于科研通互助平台的介绍 1266095