[Biomarkers associated with severity classification of asthma identified by comprehensive bioinformatics analysis].

小桶 哮喘 基因 计算生物学 基因表达 生物信息学 基因本体论 生物 医学 内科学 遗传学
作者
Zhao Xiao,Xinfeng Yan,Fĕi Li,Kang-Wen Xiao,G H Liu
出处
期刊:PubMed 卷期号:57 (9): 1458-1468
标识
DOI:10.3760/cma.j.cn112150-20230301-00165
摘要

Using an integrated bioinformatics approach to find novel biomarkers that can predict asthma severity. From June 2022 to December 2022, this clinical medical study was conducted and completed in the Department of Allergy, Zhongnan Hospital of Wuhan University. The gene chip dataset GSE43696 was screened and downloaded from the high-throughput Gene Expression Omnibus (GEO) database, and the gene chip data preprocessing was completed using package "affy" in R and "rma" algorithm in turn. Use the the "edgeR" and "limma" packages to screen out the differentially expressed genes (DEGs) between normal controls, mild to moderate asthma patients and severe asthma patients, and then use the "clusterProfiler" package to perform GO enrichment analysis and KEGG pathway enrichment analysis of DEGs, finally use the STRING website to construct a protein-protein interaction (PPI) network of DEGs to further screen key genes. Using the R language "WGCNA" package, the weighted gene co-expression network analysis (WGCNA) was performed on the dataset GSE43696, and the modules significantly related to the severity of asthma were screened out, then the hub genes were obtained by intersecting the WGCNA analysis results with the DEGs screened by PPI. Datasets GSE43696 and GSE63142 were used to verify the expression of hub genes, and the diagnostic value was evaluated according to the ROC curve, then the potential function of hub genes in dataset GSE43696 was further clarified by gene set enrichment analysis (GSEA). The results showed that a total of 251 DEGs were screened, including 39 in the normal group and mild to moderate asthma group, 178 in the normal group and severe asthma group, and 34 in the mild to moderate asthma group and severe asthma group, mainly involved in biological processes such as response to toxic substance, response to oxidative stress, extracellular structure organization, extracellular matrix organization. Two modules significantly correlated with asthma severity were screened out (red module, P=7e-6, r=0.43; pink module, P=5e-8, r=-0.51), and finally six hub genes were obtained, including B3GNT6, CEACAM5, CCK, ERBB2, CSH1 and DPPA5. The comparison of gene expression levels and ROC curve analysis of datasets GSE43696 and GSE63142 further verified the six hub genes, which may associated with o-glycan biosynthesis, alpha linolenic acid metabolism, linoleic acid metabolism, pentose and glucoronate interconversions. In conclusion, through a variety of bioinformatics analysis methods, this study identified six hub genes significantly related to the severity of asthma, which potentially provided a new direction for the prediction and targeted therapy of asthma.本研究利用综合生物信息学方法寻找能够预测哮喘严重程度的新生物标志物。于2022年6至12月,在武汉大学中南医院过敏反应科开展并完成该临床医学研究。从高通量基因表达(Gene Expression Omnibus,GEO)数据库中筛选并下载基因芯片数据集GSE43696,使用R语言“affy”包和“rma”算法完成基因芯片数据预处理。利用“edgeR”包和“limma”包筛选出正常对照者、轻中度哮喘患者和重度哮喘患者两两之间的差异表达基因(differentially expressed genes,DEGs),然后用“clusterProfiler”包对差异表达基因进行GO功能富集分析和KEGG通路富集分析,最后用STRING网站构建差异表达基因的蛋白-蛋白互作(protein-protein interaction,PPI)网络,进一步筛选差异表达基因。使用R语言“WGCNA”包对数据集GSE43696进行加权基因共表达网络分析(weighted gene co-expression network analysis,WGCNA),筛选出与哮喘严重程度显著相关的模块,将WGCNA分析结果与PPI筛选的差异表达基因取交集得到关键(hub)基因。利用数据集GSE43696和GSE63142对hub基因表达量进行验证,依据ROC曲线评估诊断价值,并通过基因集富集分析(gene set enrichment analysis,GSEA)进一步明确数据集GSE43696中hub基因的潜在功能。结果显示,共筛选出251个DEGs,其中正常组和轻中度哮喘组39个,正常组和重度哮喘组178个,轻中度哮喘组和重度哮喘组34个,主要参与对有毒物质的反应、对氧化应激的反应、细胞外结构组织、细胞外基质组织等生物过程。筛选出两个与哮喘严重程度显著相关的模块(red模块,P=7e-6,r=0.43;pink模块,P=5e-8,r=-0.51),最终得到6个hub基因,包括B3GNT6、CEACAM5、CCK、ERBB2、CSH1和DPPA5。通过数据集GSE43696和GSE63142的基因表达水平比较和ROC曲线分析进一步验证了这6个hub基因,可能与o-聚糖生物合成、α-亚麻酸代谢、亚油酸代谢和戊糖葡萄糖酸的相互转化等过程相关。综上,通过多种生物信息学分析方法,本研究鉴定出与哮喘严重程度显著相关的6个hub基因,为哮喘的病情预测和靶向治疗提供了可能的新方向。.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
998877剑指完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
张丫丫发布了新的文献求助20
2秒前
lanadalray发布了新的文献求助10
3秒前
研友_8Y26PL完成签到 ,获得积分10
5秒前
vision0000完成签到,获得积分10
5秒前
木安完成签到,获得积分10
5秒前
梅梅超勇敢完成签到 ,获得积分10
5秒前
马佳雪发布了新的文献求助10
6秒前
6秒前
starlight发布了新的文献求助10
11秒前
赘婿应助helly采纳,获得10
11秒前
lanadalray完成签到,获得积分10
12秒前
橘子的哈哈怪完成签到,获得积分10
12秒前
贰鸟应助雪山飞龙采纳,获得10
12秒前
熊boy发布了新的文献求助10
13秒前
神锋天下完成签到,获得积分10
14秒前
liran完成签到,获得积分10
14秒前
16秒前
紧张的安双完成签到,获得积分20
18秒前
lxy完成签到,获得积分10
20秒前
20秒前
彭于晏应助阿宇采纳,获得10
20秒前
科研通AI2S应助拖拉机采纳,获得10
20秒前
义气白开水完成签到,获得积分10
21秒前
詹妮完成签到,获得积分10
21秒前
23秒前
lxy发布了新的文献求助10
23秒前
细腻的金毛完成签到,获得积分10
23秒前
23秒前
bkagyin应助科研通管家采纳,获得10
24秒前
orixero应助科研通管家采纳,获得10
24秒前
田様应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
24秒前
在水一方应助科研通管家采纳,获得10
24秒前
完美世界应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得30
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958212
求助须知:如何正确求助?哪些是违规求助? 3504372
关于积分的说明 11118239
捐赠科研通 3235651
什么是DOI,文献DOI怎么找? 1788411
邀请新用户注册赠送积分活动 871211
科研通“疑难数据库(出版商)”最低求助积分说明 802565