已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Learning and Vision-Based Solution for Material Volume Estimation Considering Devices’ Applications

体积热力学 深度学习 计算机科学 人工智能 计算机视觉 工程类 量子力学 物理
作者
Wei Guan,Shuai Wang,Zeren Chen,Guohua Wu,Yi Fang,Haoyan Zhang,Guoqiang Wang
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:38 (1)
标识
DOI:10.1061/jccee5.cpeng-5436
摘要

The estimation of material volume in a construction vehicle’s bucket is a crucial prerequisite for automation, as well as for productivity assessment and efficient material transport. Although some studies have been conducted in this field, the accuracy and speed of inference have been suboptimal, and specific implementation strategies have not been proposed. To address these issues, this paper proposes a new approach. The proposed approach has three main components. First, a novel image preprocessing framework based on three-dimensional (3D) grayscale terrain is presented. Second, a semantic mask-level data set is constructed to facilitate future research in this area. Third, a combined neural network and probabilistic approach is proposed to estimate the material volume, with speed and accuracy as metrics. Transfer learning is introduced to improve training efficiency and accuracy. The proposed material volume estimation method is implemented on three different devices, addressing the problem from the development phase to the application phase. The advantages and disadvantages of each device are discussed in depth. The results demonstrate that the proposed approach achieves an impressive average accuracy of 98.20% on all three devices, with real-time or semi–real-time volume estimation feasible on each. In summary, this paper proposes a new approach to estimate the material volume in a construction vehicle’s bucket, addressing issues of accuracy and speed of inference and providing specific implementation strategies. The results demonstrate the effectiveness of the proposed approach, which has potential applications in automation and productivity assessment in the construction industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
冷静的爆米花完成签到,获得积分10
刚刚
1秒前
2秒前
3秒前
3秒前
孙凯应助butterfly采纳,获得50
5秒前
王文艺发布了新的文献求助10
6秒前
坦率的冰安完成签到,获得积分20
8秒前
pk发布了新的文献求助10
8秒前
8秒前
好椰发布了新的文献求助10
8秒前
tttt完成签到 ,获得积分10
9秒前
10秒前
小宋爱科研完成签到 ,获得积分10
10秒前
bkagyin应助馒头采纳,获得10
11秒前
佩奇完成签到 ,获得积分10
12秒前
12秒前
Gaopkid完成签到,获得积分10
12秒前
生动项链发布了新的文献求助10
12秒前
1234发布了新的文献求助10
13秒前
水心完成签到 ,获得积分10
15秒前
Gaopkid发布了新的文献求助10
16秒前
16秒前
Seven完成签到 ,获得积分10
18秒前
1234完成签到,获得积分20
20秒前
Aleioy完成签到,获得积分10
20秒前
吴书玙珩发布了新的文献求助10
20秒前
王大壮完成签到,获得积分10
21秒前
22秒前
23秒前
加菲丰丰发布了新的文献求助50
24秒前
Ava应助王文艺采纳,获得10
25秒前
26秒前
周诗琪发布了新的文献求助10
27秒前
Lee发布了新的文献求助10
29秒前
科目三应助cc采纳,获得10
29秒前
小肥侠发布了新的文献求助10
30秒前
科研通AI6应助生动项链采纳,获得10
31秒前
高级牛马完成签到 ,获得积分10
32秒前
66289完成签到 ,获得积分10
32秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502320
求助须知:如何正确求助?哪些是违规求助? 4598287
关于积分的说明 14463306
捐赠科研通 4531820
什么是DOI,文献DOI怎么找? 2483641
邀请新用户注册赠送积分活动 1466923
关于科研通互助平台的介绍 1439539