A Deep Learning and Vision-Based Solution for Material Volume Estimation Considering Devices’ Applications

体积热力学 深度学习 计算机科学 人工智能 计算机视觉 工程类 量子力学 物理
作者
Wei Guan,Shuai Wang,Zeren Chen,Guohua Wu,Yi Fang,Haoyan Zhang,Guoqiang Wang
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:38 (1)
标识
DOI:10.1061/jccee5.cpeng-5436
摘要

The estimation of material volume in a construction vehicle’s bucket is a crucial prerequisite for automation, as well as for productivity assessment and efficient material transport. Although some studies have been conducted in this field, the accuracy and speed of inference have been suboptimal, and specific implementation strategies have not been proposed. To address these issues, this paper proposes a new approach. The proposed approach has three main components. First, a novel image preprocessing framework based on three-dimensional (3D) grayscale terrain is presented. Second, a semantic mask-level data set is constructed to facilitate future research in this area. Third, a combined neural network and probabilistic approach is proposed to estimate the material volume, with speed and accuracy as metrics. Transfer learning is introduced to improve training efficiency and accuracy. The proposed material volume estimation method is implemented on three different devices, addressing the problem from the development phase to the application phase. The advantages and disadvantages of each device are discussed in depth. The results demonstrate that the proposed approach achieves an impressive average accuracy of 98.20% on all three devices, with real-time or semi–real-time volume estimation feasible on each. In summary, this paper proposes a new approach to estimate the material volume in a construction vehicle’s bucket, addressing issues of accuracy and speed of inference and providing specific implementation strategies. The results demonstrate the effectiveness of the proposed approach, which has potential applications in automation and productivity assessment in the construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
catherine发布了新的文献求助10
2秒前
cassie完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
4秒前
郝老头完成签到,获得积分0
8秒前
ybwei2008_163完成签到,获得积分10
9秒前
alixy完成签到,获得积分10
13秒前
yzhilson完成签到 ,获得积分0
15秒前
新斯的明的明完成签到 ,获得积分10
16秒前
hdhuang完成签到,获得积分10
17秒前
19秒前
量子星尘发布了新的文献求助10
24秒前
火星上的雨柏完成签到 ,获得积分10
25秒前
wuqi完成签到 ,获得积分10
26秒前
kanong完成签到,获得积分0
28秒前
心流中的麋鹿完成签到,获得积分10
33秒前
gincle完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助50
36秒前
minnie完成签到 ,获得积分10
49秒前
南浔完成签到 ,获得积分10
51秒前
木木完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
活力的珊完成签到 ,获得积分10
1分钟前
笨笨青筠完成签到 ,获得积分10
1分钟前
源来是洲董完成签到,获得积分10
1分钟前
魁梧的觅松完成签到 ,获得积分10
1分钟前
名侦探柯基完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
冷昆柏完成签到 ,获得积分10
1分钟前
小呵点完成签到 ,获得积分10
1分钟前
虞曦完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
t铁核桃1985完成签到 ,获得积分10
1分钟前
GPTea应助科研通管家采纳,获得150
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得50
1分钟前
GPTea应助科研通管家采纳,获得150
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910625
求助须知:如何正确求助?哪些是违规求助? 4186398
关于积分的说明 12999415
捐赠科研通 3953889
什么是DOI,文献DOI怎么找? 2168175
邀请新用户注册赠送积分活动 1186601
关于科研通互助平台的介绍 1093802