A Deep Learning and Vision-Based Solution for Material Volume Estimation Considering Devices’ Applications

体积热力学 深度学习 计算机科学 人工智能 计算机视觉 工程类 量子力学 物理
作者
Wei Guan,Shuai Wang,Zeren Chen,Guohua Wu,Yi Fang,Haoyan Zhang,Guoqiang Wang
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:38 (1)
标识
DOI:10.1061/jccee5.cpeng-5436
摘要

The estimation of material volume in a construction vehicle’s bucket is a crucial prerequisite for automation, as well as for productivity assessment and efficient material transport. Although some studies have been conducted in this field, the accuracy and speed of inference have been suboptimal, and specific implementation strategies have not been proposed. To address these issues, this paper proposes a new approach. The proposed approach has three main components. First, a novel image preprocessing framework based on three-dimensional (3D) grayscale terrain is presented. Second, a semantic mask-level data set is constructed to facilitate future research in this area. Third, a combined neural network and probabilistic approach is proposed to estimate the material volume, with speed and accuracy as metrics. Transfer learning is introduced to improve training efficiency and accuracy. The proposed material volume estimation method is implemented on three different devices, addressing the problem from the development phase to the application phase. The advantages and disadvantages of each device are discussed in depth. The results demonstrate that the proposed approach achieves an impressive average accuracy of 98.20% on all three devices, with real-time or semi–real-time volume estimation feasible on each. In summary, this paper proposes a new approach to estimate the material volume in a construction vehicle’s bucket, addressing issues of accuracy and speed of inference and providing specific implementation strategies. The results demonstrate the effectiveness of the proposed approach, which has potential applications in automation and productivity assessment in the construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Roy完成签到,获得积分10
4秒前
微笑芒果完成签到 ,获得积分10
4秒前
11秒前
13秒前
迷人的寒风完成签到,获得积分10
16秒前
19秒前
薛言发布了新的文献求助10
20秒前
碧菡完成签到,获得积分10
25秒前
MUAN完成签到 ,获得积分10
30秒前
科目三应助科研通管家采纳,获得10
32秒前
32秒前
科研通AI2S应助科研通管家采纳,获得10
32秒前
36秒前
量子星尘发布了新的文献求助10
40秒前
40秒前
41秒前
漂亮的战斗机完成签到 ,获得积分10
44秒前
hlm发布了新的文献求助10
45秒前
Bismarck完成签到,获得积分20
45秒前
李爱国应助Sy采纳,获得10
48秒前
千陽完成签到 ,获得积分10
58秒前
lixiang完成签到 ,获得积分10
58秒前
xuan完成签到,获得积分10
1分钟前
1分钟前
刻苦努力的火龙果完成签到,获得积分10
1分钟前
又又完成签到,获得积分10
1分钟前
zjq完成签到 ,获得积分10
1分钟前
笨笨忘幽完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
CLTTT完成签到,获得积分10
1分钟前
科目三应助hlm采纳,获得10
1分钟前
Tong完成签到,获得积分0
1分钟前
六一儿童节完成签到 ,获得积分10
1分钟前
1分钟前
Sy完成签到,获得积分10
1分钟前
rita_sun1969完成签到,获得积分10
1分钟前
boymin2015完成签到 ,获得积分10
1分钟前
Sy发布了新的文献求助10
1分钟前
yar完成签到,获得积分0
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015541
求助须知:如何正确求助?哪些是违规求助? 3555522
关于积分的说明 11318076
捐赠科研通 3288696
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015