A Deep Learning and Vision-Based Solution for Material Volume Estimation Considering Devices’ Applications

体积热力学 深度学习 计算机科学 人工智能 计算机视觉 工程类 量子力学 物理
作者
Wei Guan,Shuai Wang,Zeren Chen,Guohua Wu,Yi Fang,Haoyan Zhang,Guoqiang Wang
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:38 (1)
标识
DOI:10.1061/jccee5.cpeng-5436
摘要

The estimation of material volume in a construction vehicle’s bucket is a crucial prerequisite for automation, as well as for productivity assessment and efficient material transport. Although some studies have been conducted in this field, the accuracy and speed of inference have been suboptimal, and specific implementation strategies have not been proposed. To address these issues, this paper proposes a new approach. The proposed approach has three main components. First, a novel image preprocessing framework based on three-dimensional (3D) grayscale terrain is presented. Second, a semantic mask-level data set is constructed to facilitate future research in this area. Third, a combined neural network and probabilistic approach is proposed to estimate the material volume, with speed and accuracy as metrics. Transfer learning is introduced to improve training efficiency and accuracy. The proposed material volume estimation method is implemented on three different devices, addressing the problem from the development phase to the application phase. The advantages and disadvantages of each device are discussed in depth. The results demonstrate that the proposed approach achieves an impressive average accuracy of 98.20% on all three devices, with real-time or semi–real-time volume estimation feasible on each. In summary, this paper proposes a new approach to estimate the material volume in a construction vehicle’s bucket, addressing issues of accuracy and speed of inference and providing specific implementation strategies. The results demonstrate the effectiveness of the proposed approach, which has potential applications in automation and productivity assessment in the construction industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
量子星尘发布了新的文献求助30
1秒前
和谐的醉山完成签到,获得积分0
3秒前
我们仨完成签到 ,获得积分10
5秒前
徐畅完成签到 ,获得积分10
11秒前
晓风完成签到,获得积分10
13秒前
英姑应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
zgrmws应助科研通管家采纳,获得10
16秒前
乐乐应助wujiwuhui采纳,获得10
16秒前
16秒前
16秒前
汉堡包应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
GingerF应助科研通管家采纳,获得10
16秒前
GingerF应助科研通管家采纳,获得10
16秒前
16秒前
感叹完成签到 ,获得积分10
17秒前
andylue完成签到,获得积分10
17秒前
马淑贤完成签到 ,获得积分10
19秒前
SDNUDRUG发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
靓丽的悟空完成签到 ,获得积分10
21秒前
22秒前
24秒前
SDNUDRUG完成签到,获得积分10
26秒前
ww完成签到,获得积分10
27秒前
28秒前
朴素鑫完成签到,获得积分10
28秒前
28秒前
Dreamhappy发布了新的文献求助10
29秒前
29秒前
量子星尘发布了新的文献求助50
30秒前
jiaojaioo完成签到,获得积分10
34秒前
wujiwuhui发布了新的文献求助10
34秒前
xfye发布了新的文献求助20
35秒前
Jackie完成签到 ,获得积分10
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796286
求助须知:如何正确求助?哪些是违规求助? 5775163
关于积分的说明 15491606
捐赠科研通 4923302
什么是DOI,文献DOI怎么找? 2650299
邀请新用户注册赠送积分活动 1597526
关于科研通互助平台的介绍 1552158