A Deep Learning and Vision-Based Solution for Material Volume Estimation Considering Devices’ Applications

体积热力学 深度学习 计算机科学 人工智能 计算机视觉 工程类 量子力学 物理
作者
Wei Guan,Shuai Wang,Zeren Chen,Guohua Wu,Yi Fang,Haoyan Zhang,Guoqiang Wang
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:38 (1)
标识
DOI:10.1061/jccee5.cpeng-5436
摘要

The estimation of material volume in a construction vehicle’s bucket is a crucial prerequisite for automation, as well as for productivity assessment and efficient material transport. Although some studies have been conducted in this field, the accuracy and speed of inference have been suboptimal, and specific implementation strategies have not been proposed. To address these issues, this paper proposes a new approach. The proposed approach has three main components. First, a novel image preprocessing framework based on three-dimensional (3D) grayscale terrain is presented. Second, a semantic mask-level data set is constructed to facilitate future research in this area. Third, a combined neural network and probabilistic approach is proposed to estimate the material volume, with speed and accuracy as metrics. Transfer learning is introduced to improve training efficiency and accuracy. The proposed material volume estimation method is implemented on three different devices, addressing the problem from the development phase to the application phase. The advantages and disadvantages of each device are discussed in depth. The results demonstrate that the proposed approach achieves an impressive average accuracy of 98.20% on all three devices, with real-time or semi–real-time volume estimation feasible on each. In summary, this paper proposes a new approach to estimate the material volume in a construction vehicle’s bucket, addressing issues of accuracy and speed of inference and providing specific implementation strategies. The results demonstrate the effectiveness of the proposed approach, which has potential applications in automation and productivity assessment in the construction industry.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研时友发布了新的文献求助10
1秒前
丘比特应助留胡子的大楚采纳,获得10
1秒前
1234abcd完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
saf0852完成签到,获得积分10
1秒前
共享精神应助嘿嘿嘿采纳,获得10
1秒前
禤X发布了新的文献求助10
1秒前
2秒前
夏儿完成签到,获得积分10
2秒前
orixero应助wxt采纳,获得10
3秒前
GH发布了新的文献求助10
3秒前
3秒前
3秒前
boohey发布了新的文献求助60
4秒前
Akim应助激情的烧鹅采纳,获得10
4秒前
5秒前
1234abcd发布了新的文献求助10
5秒前
研友_VZG7GZ应助Okypete采纳,获得10
5秒前
在水一方应助木易采纳,获得30
5秒前
ding应助LBH采纳,获得10
5秒前
6秒前
田様应助李离子采纳,获得10
6秒前
酷酷妙梦发布了新的文献求助10
6秒前
6秒前
Jun完成签到 ,获得积分10
7秒前
夏儿发布了新的文献求助20
7秒前
思源应助ZYQ采纳,获得10
7秒前
7秒前
ming完成签到,获得积分10
7秒前
Lucas应助13934532358采纳,获得10
8秒前
8秒前
香蕉觅云应助渡尘采纳,获得10
8秒前
8秒前
generaliu完成签到,获得积分10
8秒前
9秒前
明亮的青旋完成签到 ,获得积分10
9秒前
Jasper应助晓晓采纳,获得10
9秒前
英姑应助ATom采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512432
求助须知:如何正确求助?哪些是违规求助? 4606873
关于积分的说明 14501499
捐赠科研通 4542174
什么是DOI,文献DOI怎么找? 2488952
邀请新用户注册赠送积分活动 1470999
关于科研通互助平台的介绍 1443152