A Deep Learning and Vision-Based Solution for Material Volume Estimation Considering Devices’ Applications

体积热力学 深度学习 计算机科学 人工智能 计算机视觉 工程类 量子力学 物理
作者
Wei Guan,Shuai Wang,Zeren Chen,Guohua Wu,Yi Fang,Haoyan Zhang,Guoqiang Wang
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:38 (1)
标识
DOI:10.1061/jccee5.cpeng-5436
摘要

The estimation of material volume in a construction vehicle’s bucket is a crucial prerequisite for automation, as well as for productivity assessment and efficient material transport. Although some studies have been conducted in this field, the accuracy and speed of inference have been suboptimal, and specific implementation strategies have not been proposed. To address these issues, this paper proposes a new approach. The proposed approach has three main components. First, a novel image preprocessing framework based on three-dimensional (3D) grayscale terrain is presented. Second, a semantic mask-level data set is constructed to facilitate future research in this area. Third, a combined neural network and probabilistic approach is proposed to estimate the material volume, with speed and accuracy as metrics. Transfer learning is introduced to improve training efficiency and accuracy. The proposed material volume estimation method is implemented on three different devices, addressing the problem from the development phase to the application phase. The advantages and disadvantages of each device are discussed in depth. The results demonstrate that the proposed approach achieves an impressive average accuracy of 98.20% on all three devices, with real-time or semi–real-time volume estimation feasible on each. In summary, this paper proposes a new approach to estimate the material volume in a construction vehicle’s bucket, addressing issues of accuracy and speed of inference and providing specific implementation strategies. The results demonstrate the effectiveness of the proposed approach, which has potential applications in automation and productivity assessment in the construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
七十二发布了新的文献求助10
1秒前
3秒前
goodgoodstudy发布了新的文献求助10
3秒前
林摆摆完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
海阔云高完成签到 ,获得积分10
5秒前
小马甲应助暖啾啾采纳,获得10
6秒前
强小强发布了新的文献求助10
7秒前
科研通AI6应助淡晴采纳,获得10
9秒前
9秒前
最初完成签到,获得积分10
9秒前
11mao11完成签到 ,获得积分10
9秒前
香蕉觅云应助今日采纳,获得10
10秒前
QW111完成签到,获得积分10
12秒前
谨慎的白秋完成签到,获得积分10
13秒前
李健应助hanjresearch采纳,获得10
13秒前
goodgoodstudy完成签到,获得积分10
13秒前
隐形曼青应助fy采纳,获得10
14秒前
15秒前
你看完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
今后应助不妖采纳,获得10
17秒前
17秒前
潇洒沛芹完成签到,获得积分10
18秒前
小二郎应助豆腐采纳,获得10
18秒前
黄大仙完成签到,获得积分10
18秒前
18秒前
Jasper应助Du采纳,获得10
19秒前
厚德载物完成签到 ,获得积分10
20秒前
经竺发布了新的文献求助10
22秒前
玄乙完成签到 ,获得积分10
23秒前
zhi完成签到,获得积分10
23秒前
23秒前
24秒前
24秒前
25秒前
26秒前
Owen应助康帅傅采纳,获得10
26秒前
量子星尘发布了新的文献求助20
26秒前
高分求助中
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Fermented Coffee Market 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5236872
求助须知:如何正确求助?哪些是违规求助? 4405022
关于积分的说明 13709120
捐赠科研通 4272996
什么是DOI,文献DOI怎么找? 2344751
邀请新用户注册赠送积分活动 1341947
关于科研通互助平台的介绍 1299669