A Deep Learning and Vision-Based Solution for Material Volume Estimation Considering Devices’ Applications

体积热力学 深度学习 计算机科学 人工智能 计算机视觉 工程类 量子力学 物理
作者
Wei Guan,Shuai Wang,Zeren Chen,Guohua Wu,Yi Fang,Haoyan Zhang,Guoqiang Wang
出处
期刊:Journal of Computing in Civil Engineering [American Society of Civil Engineers]
卷期号:38 (1)
标识
DOI:10.1061/jccee5.cpeng-5436
摘要

The estimation of material volume in a construction vehicle’s bucket is a crucial prerequisite for automation, as well as for productivity assessment and efficient material transport. Although some studies have been conducted in this field, the accuracy and speed of inference have been suboptimal, and specific implementation strategies have not been proposed. To address these issues, this paper proposes a new approach. The proposed approach has three main components. First, a novel image preprocessing framework based on three-dimensional (3D) grayscale terrain is presented. Second, a semantic mask-level data set is constructed to facilitate future research in this area. Third, a combined neural network and probabilistic approach is proposed to estimate the material volume, with speed and accuracy as metrics. Transfer learning is introduced to improve training efficiency and accuracy. The proposed material volume estimation method is implemented on three different devices, addressing the problem from the development phase to the application phase. The advantages and disadvantages of each device are discussed in depth. The results demonstrate that the proposed approach achieves an impressive average accuracy of 98.20% on all three devices, with real-time or semi–real-time volume estimation feasible on each. In summary, this paper proposes a new approach to estimate the material volume in a construction vehicle’s bucket, addressing issues of accuracy and speed of inference and providing specific implementation strategies. The results demonstrate the effectiveness of the proposed approach, which has potential applications in automation and productivity assessment in the construction industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助一只小菜鸟采纳,获得10
2秒前
66发布了新的文献求助20
3秒前
bkagyin应助佟翠芙采纳,获得30
4秒前
5秒前
Oliver完成签到,获得积分10
6秒前
7秒前
hh发布了新的文献求助10
8秒前
Ava应助包容绯采纳,获得10
8秒前
12秒前
高亚飞机给高亚飞机的求助进行了留言
12秒前
look完成签到,获得积分10
12秒前
寻道图强应助橙c美式采纳,获得30
13秒前
13秒前
14秒前
史莱莱莱姆完成签到,获得积分10
14秒前
jjhh完成签到,获得积分20
16秒前
17秒前
天涯倦客完成签到,获得积分10
17秒前
感动归尘发布了新的文献求助10
18秒前
19秒前
健壮东蒽发布了新的文献求助10
19秒前
19秒前
20秒前
20秒前
yhyhyhyh完成签到,获得积分10
21秒前
pluto应助lull采纳,获得10
21秒前
virgil应助lull采纳,获得10
21秒前
21秒前
汉堡包应助悠悠采纳,获得10
23秒前
111发布了新的文献求助10
24秒前
buno应助131949采纳,获得10
24秒前
Radarax发布了新的文献求助10
24秒前
健壮东蒽完成签到,获得积分10
25秒前
陈陈完成签到,获得积分10
25秒前
26秒前
妮妮完成签到 ,获得积分10
26秒前
27秒前
小羊要加油完成签到 ,获得积分10
28秒前
28秒前
8R60d8应助北辰采纳,获得10
28秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233445
求助须知:如何正确求助?哪些是违规求助? 2879969
关于积分的说明 8213423
捐赠科研通 2547415
什么是DOI,文献DOI怎么找? 1376927
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623150