Communication-Efficient Personalized Federated Learning with Privacy-Preserving

计算机科学 加密 方案(数学) 灵活性(工程) 分布式计算 人工智能 机器学习 数据挖掘 计算机网络 数学分析 统计 数学
作者
Qian Wang,Siguang Chen,Meng Wu
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsm.2023.3323129
摘要

Federated learning (FL) gets a sound momentum of growth, which is widely applied to train model in the distributed scenario. However, huge communication cost, poor performance under heterogeneous datasets and models, and emerging privacy leakage are major problems of FL. In this paper, we propose a communication-efficient personalized FL scheme with privacy-preserving. Firstly, we develop a personalized FL with feature fusion-based mutual-learning, which can achieve communication-efficient and personalized learning by training the shared model, private model and fusion model reciprocally on the client. Specifically, only the shared model is shared with global model to reduce communication cost, the private model can be personalized, and the fusion model can fuse the local and global knowledge adaptively in different stages. Secondly, to further reduce the communication cost and enhance the privacy of gradients, we design a privacy-preserving method with gradient compression. In this method, we construct a chaotic encrypted cyclic measurement matrix, which can achieve well privacy protection and lightweight compression. Moreover, we present a sparsity-based adaptive iterative hard threshold algorithm to improve the flexibility and reconstruction performance. Finally, we perform extensive experiments on different datasets and models, and the results show that our scheme achieves more competitive results than other benchmarks on model performance and privacy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
清秀灵薇发布了新的文献求助10
1秒前
3秒前
5秒前
6秒前
6秒前
7秒前
Lignin发布了新的文献求助10
7秒前
8秒前
8秒前
酷炫的凤妖完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助30
10秒前
11秒前
Yepp发布了新的文献求助10
12秒前
研友_8KKmR8发布了新的文献求助10
12秒前
12秒前
14秒前
sjyplus1发布了新的文献求助10
16秒前
17秒前
一路狂奔等不了完成签到 ,获得积分10
17秒前
Lignin发布了新的文献求助10
17秒前
Akim应助能干的吐司采纳,获得10
17秒前
MrRen完成签到,获得积分10
18秒前
Wd完成签到,获得积分20
19秒前
Menand完成签到,获得积分10
20秒前
22秒前
22秒前
FashionBoy应助Lignin采纳,获得10
23秒前
优雅梨愁发布了新的文献求助10
23秒前
星辰大海应助Lignin采纳,获得10
23秒前
大个应助Lignin采纳,获得10
23秒前
完美世界应助Lignin采纳,获得10
23秒前
隐形曼青应助Lignin采纳,获得10
23秒前
酷波er应助sjyplus1采纳,获得10
23秒前
赘婿应助Lignin采纳,获得10
23秒前
壮观听白完成签到,获得积分10
24秒前
24秒前
24秒前
丰富听白应助xzy998采纳,获得60
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5736834
求助须知:如何正确求助?哪些是违规求助? 5368742
关于积分的说明 15334181
捐赠科研通 4880593
什么是DOI,文献DOI怎么找? 2622909
邀请新用户注册赠送积分活动 1571817
关于科研通互助平台的介绍 1528640