Communication-Efficient Personalized Federated Learning with Privacy-Preserving

计算机科学 加密 方案(数学) 灵活性(工程) 分布式计算 人工智能 机器学习 数据挖掘 计算机网络 数学分析 统计 数学
作者
Qian Wang,Siguang Chen,Meng Wu
出处
期刊:IEEE Transactions on Network and Service Management [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tnsm.2023.3323129
摘要

Federated learning (FL) gets a sound momentum of growth, which is widely applied to train model in the distributed scenario. However, huge communication cost, poor performance under heterogeneous datasets and models, and emerging privacy leakage are major problems of FL. In this paper, we propose a communication-efficient personalized FL scheme with privacy-preserving. Firstly, we develop a personalized FL with feature fusion-based mutual-learning, which can achieve communication-efficient and personalized learning by training the shared model, private model and fusion model reciprocally on the client. Specifically, only the shared model is shared with global model to reduce communication cost, the private model can be personalized, and the fusion model can fuse the local and global knowledge adaptively in different stages. Secondly, to further reduce the communication cost and enhance the privacy of gradients, we design a privacy-preserving method with gradient compression. In this method, we construct a chaotic encrypted cyclic measurement matrix, which can achieve well privacy protection and lightweight compression. Moreover, we present a sparsity-based adaptive iterative hard threshold algorithm to improve the flexibility and reconstruction performance. Finally, we perform extensive experiments on different datasets and models, and the results show that our scheme achieves more competitive results than other benchmarks on model performance and privacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助明理十三采纳,获得10
刚刚
1秒前
Foch发布了新的文献求助10
1秒前
yolo发布了新的文献求助10
1秒前
张雨露完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
乐乐应助張医铄采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
奔跑西木发布了新的文献求助10
6秒前
6秒前
6秒前
Taylor发布了新的文献求助10
6秒前
奋斗夏烟发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
Trends发布了新的文献求助10
7秒前
7秒前
7秒前
Sun发布了新的文献求助10
8秒前
麦子发布了新的文献求助10
8秒前
麦子发布了新的文献求助10
9秒前
9秒前
麦子发布了新的文献求助10
9秒前
keyun发布了新的文献求助10
9秒前
麦子发布了新的文献求助10
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992659
求助须知:如何正确求助?哪些是违规求助? 3533545
关于积分的说明 11262911
捐赠科研通 3273209
什么是DOI,文献DOI怎么找? 1805969
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809545