Graph based embedding learning of trajectory data for transportation mode recognition by fusing sequence and dependency relations

弹道 计算机科学 图形 人工智能 数据挖掘 特征(语言学) 序列(生物学) 推论 机器学习 理论计算机科学 天文 语言学 遗传学 生物 物理 哲学
作者
Wenhao Yu,Guanwen Wang
出处
期刊:International Journal of Geographical Information Science [Informa]
卷期号:37 (12): 2514-2537 被引量:5
标识
DOI:10.1080/13658816.2023.2268668
摘要

AbstractAs an important task in spatial data mining, trajectory transportation mode recognition can reflect various individual behaviors and traveling patterns in urban space. As trajectory is essentially a sequence, many scholars use the sequence inference models to mine the information in trajectory data. However, such methods often ignored the spatial correlation between trajectory points and implemented the evaluation based only on representative feature statistics selected in the trajectory data preprocessing stage, thus have difficulties in acquiring high-order traveling pattern features. In this study, we propose a novel ensemble recognition method for representing trajectory data with the graph structure based on sequence and dependency relations. This method integrates the sequence of trajectory points and the correlation between characteristic points of a travel path into a fused graph convolutional network to obtain semantic feature information at multiple levels. We validate our proposed method with experiments on the trajectory benchmark dataset from the Microsoft GeoLife project. The results demonstrated that our proposed graph network outperforms other baseline methods in the transportation mode recognition task of trajectories. This method can help to discover the movement patterns of urban residents, and further provide effective assistance for the management of cities.Keywords: Trajectory datagraph convolution networktransportation mode recognitionfeature extractionfeature fusion AcknowledgmentsThe authors are grateful to the associate editor, Urska Demsar, and the anonymous referees for their valuable comments and suggestions. The project was supported by the National Natural Science Foundation of China (42371446 and 42071442) and by the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (No.CUG170640). This research was also supported by Meituan.Author contributionsWenhao Yu: Conceptualization, methodology, formal analysis, validation, writing—original draft preparation, writing—review and editing, supervision, project administration, funding acquisition; Guanwen Wang: Methodology, validation, formal analysis, investigation, writing—original draft preparation, writing—review and editing, visualization. All authors have read and agreed to the published version of the manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data and codes availability statementThe data and codes that support the findings of this study are available with a DOI at (https://doi.org/10.6084/m9.figshare.21608310).Additional informationNotes on contributorsWenhao YuWenhao Yu received the B.S. and Ph.D. degrees in Geoinformatics from the Wuhan University, Wuhan, China, in 2010 and 2015, respectively. He is a professor at China University of Geosciences, Wuhan, China (CUG). His research interests include spatial data mining, map generalization, and deep learning.Guanwen WangGuanwen Wang is a master student in the School of Geography and Information Engineering, China University of Geosciences, Wuhan, China (CUG). Her research interests include deep learning and spatial data mining.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助司徒无剑采纳,获得10
1秒前
魔幻的从梦完成签到,获得积分10
1秒前
萧湘完成签到,获得积分10
1秒前
iNk应助wangnn采纳,获得20
2秒前
2秒前
黄老板完成签到,获得积分20
4秒前
unicornmed给unicornmed的求助进行了留言
4秒前
Mrsu发布了新的文献求助20
5秒前
saberLee完成签到,获得积分10
5秒前
5秒前
小猫宝发布了新的文献求助10
5秒前
6秒前
传统的幻梦完成签到,获得积分10
6秒前
胜男完成签到,获得积分10
7秒前
小马甲应助司徒无剑采纳,获得10
9秒前
高灵雨完成签到,获得积分10
9秒前
DY完成签到 ,获得积分10
10秒前
HBXAurora发布了新的文献求助10
11秒前
Freya发布了新的文献求助30
11秒前
12秒前
粥粥关注了科研通微信公众号
13秒前
13秒前
Mrsu完成签到,获得积分10
13秒前
cheunsor发布了新的文献求助10
14秒前
帅气的藏鸟完成签到,获得积分10
15秒前
无辜梨愁完成签到 ,获得积分10
17秒前
18秒前
18秒前
19秒前
20秒前
Owen应助司徒无剑采纳,获得10
21秒前
爆米花应助香梨采纳,获得10
21秒前
所所应助小七采纳,获得10
21秒前
黄老板发布了新的文献求助10
22秒前
小骁同学完成签到,获得积分10
22秒前
22秒前
z_完成签到 ,获得积分10
23秒前
顺其自然完成签到 ,获得积分10
23秒前
彭于晏应助kiki采纳,获得20
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134744
求助须知:如何正确求助?哪些是违规求助? 2785657
关于积分的说明 7773533
捐赠科研通 2441441
什么是DOI,文献DOI怎么找? 1297924
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825