亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Inverse Design of Dual-Band Microstrip Filters Based on Generative Adversarial Network

反向 算法 计算机科学 滤波器(信号处理) 数学 几何学 计算机视觉
作者
Yuwei Zhang,Jinping Xu
标识
DOI:10.1109/lmwt.2023.3329047
摘要

Conventional design approaches for microstrip filters involve complex mathematical computations and exhaustive parameter tuning, which require a substantial investment of time and intellectual resources. In this letter, we present an inverse design model based on conditional deep convolutional (CDC) generative adversarial network (GAN) to significantly simplify the design process of dual-band microstrip filters. The circuit structure of the filters consists of two fixed feedlines and a square patch with irregular notches that is formed by 32 $\times$ 32 pixels. By establishing the relationship between the pixelated patterns and their corresponding ${S}$ -parameters, the inverse design problem of the filters is converted and simplified to the inverse design problem of the pixelated patterns. It is addressed by an inverse design model based on GAN that is constructed with three convolutional neural networks (CNNs). When feeding a set of customized ${S}$ -parameters into the inverse design model, a series of special pixelated patterns are generated with the assistance of the GAN in about 11 min. Four design examples of dual-band filters with center frequencies located in ${S}$ / ${C}$ -band and ${C}$ / $L$ -band, respectively, are provided to validate the effectiveness of the inverse design model. The simulated ${S}$ -parameters of the inversely designed filters are in good agreement with the customized ones. Two practical examples of dual-band microstrip filters operating at 3 and 5 GHz are presented to further demonstrate the feasibility of the proposed inverse design method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助lawang采纳,获得10
18秒前
星辰大海应助lawang采纳,获得10
19秒前
领导范儿应助lawang采纳,获得10
19秒前
善学以致用应助lawang采纳,获得10
19秒前
共享精神应助lawang采纳,获得10
19秒前
JamesPei应助lawang采纳,获得10
19秒前
Lucas应助lawang采纳,获得10
19秒前
Ava应助lawang采纳,获得10
19秒前
SciGPT应助lawang采纳,获得10
19秒前
Owen应助lawang采纳,获得10
19秒前
33秒前
Moto_Fang完成签到 ,获得积分10
33秒前
33秒前
黄院士完成签到 ,获得积分10
36秒前
Hello应助putao采纳,获得10
40秒前
51秒前
putao发布了新的文献求助10
56秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
GIA发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lawang发布了新的文献求助10
1分钟前
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957