Inverse Design of Dual-Band Microstrip Filters Based on Generative Adversarial Network

反向 算法 计算机科学 滤波器(信号处理) 数学 几何学 计算机视觉
作者
Yuwei Zhang,Jinping Xu
标识
DOI:10.1109/lmwt.2023.3329047
摘要

Conventional design approaches for microstrip filters involve complex mathematical computations and exhaustive parameter tuning, which require a substantial investment of time and intellectual resources. In this letter, we present an inverse design model based on conditional deep convolutional (CDC) generative adversarial network (GAN) to significantly simplify the design process of dual-band microstrip filters. The circuit structure of the filters consists of two fixed feedlines and a square patch with irregular notches that is formed by 32 $\times$ 32 pixels. By establishing the relationship between the pixelated patterns and their corresponding ${S}$ -parameters, the inverse design problem of the filters is converted and simplified to the inverse design problem of the pixelated patterns. It is addressed by an inverse design model based on GAN that is constructed with three convolutional neural networks (CNNs). When feeding a set of customized ${S}$ -parameters into the inverse design model, a series of special pixelated patterns are generated with the assistance of the GAN in about 11 min. Four design examples of dual-band filters with center frequencies located in ${S}$ / ${C}$ -band and ${C}$ / $L$ -band, respectively, are provided to validate the effectiveness of the inverse design model. The simulated ${S}$ -parameters of the inversely designed filters are in good agreement with the customized ones. Two practical examples of dual-band microstrip filters operating at 3 and 5 GHz are presented to further demonstrate the feasibility of the proposed inverse design method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
BurgerKing完成签到,获得积分10
1秒前
思源应助无限的丹南采纳,获得10
1秒前
我是快乐的小行家完成签到,获得积分10
2秒前
JamesPei应助认真平蓝采纳,获得10
3秒前
3秒前
3秒前
3秒前
如意的尔冬完成签到,获得积分10
4秒前
nn应助积极问晴采纳,获得10
4秒前
科研通AI5应助喜悦的冰菱采纳,获得10
4秒前
5秒前
5秒前
大模型应助Ler采纳,获得10
5秒前
Ankh发布了新的文献求助10
5秒前
ohh发布了新的文献求助10
6秒前
Duan应助大方明杰采纳,获得10
7秒前
7秒前
8秒前
8秒前
快乐友灵发布了新的文献求助10
9秒前
本尼脸上褶子完成签到 ,获得积分10
10秒前
李健应助敏感草丛采纳,获得10
10秒前
虞美人发布了新的文献求助10
10秒前
桐桐应助sen123采纳,获得30
11秒前
12秒前
12秒前
12秒前
12秒前
猪猪hero发布了新的文献求助30
12秒前
13秒前
怡然酬海发布了新的文献求助10
14秒前
踏实天亦完成签到,获得积分10
14秒前
千寻发布了新的文献求助10
15秒前
15秒前
16秒前
东海帝皇发布了新的文献求助10
17秒前
ZZ发布了新的文献求助10
17秒前
18秒前
19秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490203
求助须知:如何正确求助?哪些是违规求助? 3077204
关于积分的说明 9148048
捐赠科研通 2769368
什么是DOI,文献DOI怎么找? 1519705
邀请新用户注册赠送积分活动 704187
科研通“疑难数据库(出版商)”最低求助积分说明 702113