Inverse Design of Dual-Band Microstrip Filters Based on Generative Adversarial Network

反向 算法 计算机科学 滤波器(信号处理) 数学 几何学 计算机视觉
作者
Yuwei Zhang,Jinping Xu
标识
DOI:10.1109/lmwt.2023.3329047
摘要

Conventional design approaches for microstrip filters involve complex mathematical computations and exhaustive parameter tuning, which require a substantial investment of time and intellectual resources. In this letter, we present an inverse design model based on conditional deep convolutional (CDC) generative adversarial network (GAN) to significantly simplify the design process of dual-band microstrip filters. The circuit structure of the filters consists of two fixed feedlines and a square patch with irregular notches that is formed by 32 $\times$ 32 pixels. By establishing the relationship between the pixelated patterns and their corresponding ${S}$ -parameters, the inverse design problem of the filters is converted and simplified to the inverse design problem of the pixelated patterns. It is addressed by an inverse design model based on GAN that is constructed with three convolutional neural networks (CNNs). When feeding a set of customized ${S}$ -parameters into the inverse design model, a series of special pixelated patterns are generated with the assistance of the GAN in about 11 min. Four design examples of dual-band filters with center frequencies located in ${S}$ / ${C}$ -band and ${C}$ / $L$ -band, respectively, are provided to validate the effectiveness of the inverse design model. The simulated ${S}$ -parameters of the inversely designed filters are in good agreement with the customized ones. Two practical examples of dual-band microstrip filters operating at 3 and 5 GHz are presented to further demonstrate the feasibility of the proposed inverse design method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助可靠半雪采纳,获得10
1秒前
1秒前
2秒前
高兴可乐发布了新的文献求助20
3秒前
桐桐应助阿白头发多多采纳,获得10
3秒前
Orange应助忧虑的以菱采纳,获得10
3秒前
4秒前
4秒前
韶沛凝完成签到,获得积分10
5秒前
5秒前
ZHANG_ZHOU_HE发布了新的文献求助30
6秒前
大个应助神勇的哈密瓜采纳,获得10
6秒前
庄冬丽发布了新的文献求助10
7秒前
清风发布了新的文献求助10
7秒前
王卫完成签到,获得积分10
7秒前
7秒前
JameLEE完成签到,获得积分10
9秒前
共享精神应助高兴可乐采纳,获得10
9秒前
萱萱发布了新的文献求助10
9秒前
勤奋糖豆发布了新的文献求助20
10秒前
今后应助阿鹿采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
浮游应助nenoaowu采纳,获得10
13秒前
15秒前
庄冬丽完成签到,获得积分10
15秒前
孟一完成签到,获得积分10
16秒前
牛牛牛完成签到,获得积分10
16秒前
wq发布了新的文献求助10
20秒前
111发布了新的文献求助10
21秒前
21秒前
腼腆的白开水完成签到 ,获得积分10
21秒前
22秒前
小雪糕完成签到,获得积分10
22秒前
浮游应助nenoaowu采纳,获得10
22秒前
22秒前
顾矜应助zjy采纳,获得10
23秒前
24秒前
默默蓝发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Research Handbook on Corporate Governance in China 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4908175
求助须知:如何正确求助?哪些是违规求助? 4184895
关于积分的说明 12995880
捐赠科研通 3951536
什么是DOI,文献DOI怎么找? 2167047
邀请新用户注册赠送积分活动 1185523
关于科研通互助平台的介绍 1092050