Copula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problems

计算机科学 特征选择 算法 元启发式 人工智能 维数之咒 局部最优 水准点(测量) 机器学习 数据挖掘 大地测量学 地理
作者
Heba Askr,Mahmoud Abdel-Salam,Aboul Ella Hassanien
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121582-121582 被引量:38
标识
DOI:10.1016/j.eswa.2023.121582
摘要

Feature selection (FS) is a crucial process that aims to remove unnecessary features from datasets. It plays a role in data mining and machine learning (ML) by reducing the risk associated with high-dimensional datasets. FS is considered a challenging problem that is difficult to solve efficiently due to its combinatorial nature. As the size of the problem increases, the computation time also grows. Recently, researchers have focused on metaheuristic FS algorithms specifically designed for high-dimensional datasets. Therefore, this article proposes a powerful metaheuristic algorithm called Binary Enhanced Golden Jackal Optimization (BEGJO), which is an improved version of the recently published Golden Jackal Optimization (GJO) algorithm. The original GJO algorithm faces challenges when dealing with high-dimensional FS problems, as it tends to get trapped in local optima. To address this issue, various enhancement strategies are employed to improve the efficiency of GJO. The proposed BEGJO algorithm utilizes Copula Entropy (CE) to reduce the dimensionality of high-dimensional FS problems while maintaining high classification accuracy using the K-Nearest Neighbour (K-NN) classifier. Additionally, four enhancement strategies are incorporated to enhance the exploration and exploitation capabilities of the fundamental GJO algorithm. The BEGJO algorithm is transformed into its binary form using the sigmoid transfer function, aligning it with the nature of the FS problem. It is then tested on various high-dimensional benchmark datasets. The effectiveness of BEGJO is evaluated by comparing it with well-known algorithms in terms of classification accuracy, feature dimension, and processing time. BEGJO outperforms other algorithms in terms of classification accuracy and feature dimension and ranks up to fourth in terms of processing time. Furthermore, the advantageous use of CE is demonstrated by comparing the performance of the proposed algorithm with traditional FS algorithms. Statistical evaluations are conducted to further validate the effectiveness and superiority of the proposed algorithm. The results confirm that BEGJO is an effective solution for high-dimensional FS problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
1秒前
所所应助过氧化氢采纳,获得10
3秒前
青山发布了新的文献求助50
4秒前
4秒前
大白发布了新的文献求助10
4秒前
4秒前
热情的达完成签到,获得积分10
4秒前
酷波er应助十九岁的时差采纳,获得10
4秒前
gj发布了新的文献求助10
5秒前
Hairee发布了新的文献求助10
5秒前
momo发布了新的文献求助10
9秒前
称心尔曼完成签到,获得积分10
10秒前
12秒前
14秒前
谷蓝完成签到,获得积分10
14秒前
16秒前
希望天下0贩的0应助Hairee采纳,获得10
17秒前
Rondab应助ali采纳,获得30
18秒前
懒羊羊完成签到,获得积分10
18秒前
好吃完成签到,获得积分20
18秒前
好吃发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
量子星尘发布了新的文献求助10
23秒前
张雯思发布了新的文献求助10
23秒前
fjm完成签到,获得积分10
23秒前
老实雁蓉完成签到,获得积分10
24秒前
fjm发布了新的文献求助10
25秒前
27秒前
微醺小王发布了新的文献求助10
27秒前
29秒前
zhang发布了新的文献求助10
29秒前
qqq发布了新的文献求助10
30秒前
31秒前
李潇潇完成签到 ,获得积分10
32秒前
Ava应助笑点低方盒采纳,获得10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158