Copula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problems

计算机科学 特征选择 算法 元启发式 人工智能 维数之咒 局部最优 机器学习 数据挖掘
作者
Heba Askr,Mahmoud Abdel-Salam,Aboul Ella Hassanien
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121582-121582 被引量:15
标识
DOI:10.1016/j.eswa.2023.121582
摘要

Feature selection (FS) is a crucial process that aims to remove unnecessary features from datasets. It plays a role in data mining and machine learning (ML) by reducing the risk associated with high-dimensional datasets. FS is considered a challenging problem that is difficult to solve efficiently due to its combinatorial nature. As the size of the problem increases, the computation time also grows. Recently, researchers have focused on metaheuristic FS algorithms specifically designed for high-dimensional datasets. Therefore, this article proposes a powerful metaheuristic algorithm called Binary Enhanced Golden Jackal Optimization (BEGJO), which is an improved version of the recently published Golden Jackal Optimization (GJO) algorithm. The original GJO algorithm faces challenges when dealing with high-dimensional FS problems, as it tends to get trapped in local optima. To address this issue, various enhancement strategies are employed to improve the efficiency of GJO. The proposed BEGJO algorithm utilizes Copula Entropy (CE) to reduce the dimensionality of high-dimensional FS problems while maintaining high classification accuracy using the K-Nearest Neighbour (K-NN) classifier. Additionally, four enhancement strategies are incorporated to enhance the exploration and exploitation capabilities of the fundamental GJO algorithm. The BEGJO algorithm is transformed into its binary form using the sigmoid transfer function, aligning it with the nature of the FS problem. It is then tested on various high-dimensional benchmark datasets. The effectiveness of BEGJO is evaluated by comparing it with well-known algorithms in terms of classification accuracy, feature dimension, and processing time. BEGJO outperforms other algorithms in terms of classification accuracy and feature dimension and ranks up to fourth in terms of processing time. Furthermore, the advantageous use of CE is demonstrated by comparing the performance of the proposed algorithm with traditional FS algorithms. Statistical evaluations are conducted to further validate the effectiveness and superiority of the proposed algorithm. The results confirm that BEGJO is an effective solution for high-dimensional FS problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗的学姐完成签到,获得积分10
刚刚
bkagyin应助xiaowang采纳,获得10
1秒前
3秒前
风中乘风完成签到,获得积分20
3秒前
3秒前
4秒前
summer大魔王完成签到,获得积分10
4秒前
4秒前
Phoebe Li发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
呵呵哒完成签到,获得积分10
7秒前
大模型应助噗噗个噗采纳,获得10
7秒前
7秒前
hu11发布了新的文献求助10
7秒前
lize5493发布了新的文献求助10
8秒前
瀚森发布了新的文献求助20
8秒前
风中乘风发布了新的文献求助10
8秒前
kaikai发布了新的文献求助30
8秒前
Carl完成签到 ,获得积分10
8秒前
yy发布了新的文献求助10
9秒前
大喜完成签到,获得积分10
9秒前
追寻完成签到 ,获得积分10
10秒前
阳地黄发布了新的文献求助30
10秒前
木子应助Hanmos3624采纳,获得10
10秒前
顺利的伊应助木木采纳,获得20
11秒前
Tewd发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
典雅的小天鹅完成签到,获得积分10
12秒前
12秒前
闵傲南完成签到,获得积分10
13秒前
打打应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
14秒前
大个应助科研通管家采纳,获得10
15秒前
Orange应助科研通管家采纳,获得10
15秒前
打打应助科研通管家采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148786
求助须知:如何正确求助?哪些是违规求助? 2799787
关于积分的说明 7837076
捐赠科研通 2457292
什么是DOI,文献DOI怎么找? 1307821
科研通“疑难数据库(出版商)”最低求助积分说明 628276
版权声明 601663