Copula entropy-based golden jackal optimization algorithm for high-dimensional feature selection problems

计算机科学 特征选择 算法 元启发式 人工智能 维数之咒 局部最优 水准点(测量) 机器学习 数据挖掘 大地测量学 地理
作者
Heba Askr,Mahmoud Abdel-Salam,Aboul Ella Hassanien
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121582-121582 被引量:56
标识
DOI:10.1016/j.eswa.2023.121582
摘要

Feature selection (FS) is a crucial process that aims to remove unnecessary features from datasets. It plays a role in data mining and machine learning (ML) by reducing the risk associated with high-dimensional datasets. FS is considered a challenging problem that is difficult to solve efficiently due to its combinatorial nature. As the size of the problem increases, the computation time also grows. Recently, researchers have focused on metaheuristic FS algorithms specifically designed for high-dimensional datasets. Therefore, this article proposes a powerful metaheuristic algorithm called Binary Enhanced Golden Jackal Optimization (BEGJO), which is an improved version of the recently published Golden Jackal Optimization (GJO) algorithm. The original GJO algorithm faces challenges when dealing with high-dimensional FS problems, as it tends to get trapped in local optima. To address this issue, various enhancement strategies are employed to improve the efficiency of GJO. The proposed BEGJO algorithm utilizes Copula Entropy (CE) to reduce the dimensionality of high-dimensional FS problems while maintaining high classification accuracy using the K-Nearest Neighbour (K-NN) classifier. Additionally, four enhancement strategies are incorporated to enhance the exploration and exploitation capabilities of the fundamental GJO algorithm. The BEGJO algorithm is transformed into its binary form using the sigmoid transfer function, aligning it with the nature of the FS problem. It is then tested on various high-dimensional benchmark datasets. The effectiveness of BEGJO is evaluated by comparing it with well-known algorithms in terms of classification accuracy, feature dimension, and processing time. BEGJO outperforms other algorithms in terms of classification accuracy and feature dimension and ranks up to fourth in terms of processing time. Furthermore, the advantageous use of CE is demonstrated by comparing the performance of the proposed algorithm with traditional FS algorithms. Statistical evaluations are conducted to further validate the effectiveness and superiority of the proposed algorithm. The results confirm that BEGJO is an effective solution for high-dimensional FS problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ym发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
小哦嘿应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
大模型应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
小哦嘿应助科研通管家采纳,获得10
5秒前
浮游应助科研通管家采纳,获得10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
爱吃地锅鱼完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
cgh发布了新的文献求助10
7秒前
8秒前
filili完成签到,获得积分10
8秒前
烂漫的涫完成签到 ,获得积分10
10秒前
来了来了完成签到 ,获得积分10
10秒前
12秒前
一一完成签到,获得积分10
12秒前
浮游应助Qian采纳,获得10
12秒前
mtfx发布了新的文献求助20
12秒前
13秒前
13秒前
CipherSage应助微笑晓丝采纳,获得10
13秒前
Owen应助cgh采纳,获得10
14秒前
15秒前
浮游应助fzzf采纳,获得10
16秒前
16秒前
优美紫槐应助成就的鲂采纳,获得10
18秒前
19秒前
kakawang完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5685045
求助须知:如何正确求助?哪些是违规求助? 5040038
关于积分的说明 15185849
捐赠科研通 4844104
什么是DOI,文献DOI怎么找? 2597110
邀请新用户注册赠送积分活动 1549690
关于科研通互助平台的介绍 1508176