化学
电催化剂
氨生产
氨
钙钛矿(结构)
催化作用
氧气
空位缺陷
无机化学
氧化物
电化学
物理化学
结晶学
电极
生物化学
有机化学
作者
Kaibin Chu,Wei Zong,Guohao Xue,Hele Guo,Jingjing Qin,Haiyan Zhu,Nan Zhang,Zhihong Tian,Hongliang Dong,Yue‐E Miao,Maarten B. J. Roeffaers,Johan Hofkens,Feili Lai,Tianxi Liu
摘要
The electrocatalytic nitrate (NO3-) reduction reaction (eNITRR) is a promising method for ammonia synthesis. However, its efficacy is currently limited due to poor selectivity, largely caused by the inherent complexity of the multiple-electron processes involved. To address these issues, oxygen-vacancy-rich LaFe0.9M0.1O3-δ (M = Co, Ni, and Cu) perovskite submicrofibers have been designed from the starting material LaFeO3-δ (LF) by a B-site substitution strategy and used as the eNITRR electrocatalyst. Consequently, the LaFe0.9Cu0.1O3-δ (LF0.9Cu0.1) submicrofibers with a stronger Fe-O hybridization, more oxygen vacancies, and more positive surface potential exhibit a higher ammonia yield rate of 349 ± 15 μg h-1 mg-1cat. and a Faradaic efficiency of 48 ± 2% than LF submicrofibers. The COMSOL Multiphysics simulations demonstrate that the more positive surface of LF0.9Cu0.1 submicrofibers can induce NO3- enrichment and suppress the competing hydrogen evolution reaction. By combining a variety of in situ characterizations and density functional theory calculations, the eNITRR mechanism is revealed, where the first proton-electron coupling step (*NO3 + H+ + e- → *HNO3) is the rate-determining step with a reduced energy barrier of 1.83 eV. This work highlights the positive effect of cation substitution in promoting eNITRR properties of perovskites and provides new insights into the studies of perovskite-type electrocatalytic ammonia synthesis catalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI