亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Tomographic Inversion of the Ionospheric Electron Density Driven by the Scales of Empirical Orthogonal Functions

体素 电离层 约束(计算机辅助设计) 计算机科学 遥感 大地测量学 气象学 算法 物理 地质学 数学 人工智能 地球物理学 几何学
作者
Jingjie Yu,Yuchen Dai,Yanyu Zhu,Haoyu Zhu,Yingqi Huang,Lixin Wu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-13
标识
DOI:10.1109/tgrs.2023.3316187
摘要

Ionospheric tomography is a popular technique for ionosphere imaging. Though dozens of models have been proposed in the past decades, their inflexibilities in constraints, dependencies on background and lacks of constraint on dark voxels remain headache. Several means were taken in our developed model, named EOF-based multiscale tomographic model (EMST). In EMST, a series of sub-models characterized by different scales are established. A new scale is continuously added to the previous model to capture the structures of different scales by taking each EOF as a new scale. The captured structures are then consolidated by using them to restrain the subsequent models. This ensures a rigid but also a flexible model. Then, the background dependency problem is alleviated by an initial model that can give a rough estimation on the ionosphere without any background. Finally, the VTEC map is used to additionally restrain the voxels, especially the dark voxels, in EMST. A few tests were conducted to validate our model, compare it with the Frazaneh model, and discuss the means. Results show that our model outperforms the reference model in vertical profile, F2 layer peak density (NmF2), slant total electron content (STEC) and vertical total electron content (VTEC) comparisons. Its average improvements over the Farzaneh model reach to 4.93%, 28.69% and 40.89% in NmF2, STEC and VTEC, respectively. Besides, evidences also show that the EMST model is less dominated by the prior model and can be benefited from the multiscale strategy and the VTEC constraint.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Docgyj完成签到 ,获得积分10
25秒前
冰激凌完成签到,获得积分10
32秒前
闪闪飞阳发布了新的文献求助10
47秒前
科研通AI5应助何三岁采纳,获得10
49秒前
科研通AI5应助何三岁采纳,获得10
49秒前
文静的摩托完成签到,获得积分10
1分钟前
ding应助科研通管家采纳,获得10
1分钟前
1分钟前
重要的炳完成签到 ,获得积分10
1分钟前
yoona发布了新的文献求助10
1分钟前
传奇3应助晚风采纳,获得10
1分钟前
caitlin完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
yoona发布了新的文献求助10
2分钟前
2分钟前
金薇薇发布了新的文献求助30
2分钟前
JamesPei应助科研通管家采纳,获得10
3分钟前
3分钟前
晚风发布了新的文献求助10
3分钟前
晚风完成签到,获得积分10
3分钟前
深情安青应助唠叨的明雪采纳,获得10
3分钟前
碘伏完成签到 ,获得积分10
4分钟前
4分钟前
LSL丶完成签到,获得积分10
4分钟前
奋斗嫣然发布了新的文献求助10
4分钟前
Otter完成签到,获得积分10
5分钟前
5分钟前
李春宇完成签到 ,获得积分10
5分钟前
优雅草丛发布了新的文献求助10
5分钟前
Seven完成签到,获得积分10
5分钟前
NexusExplorer应助Bo采纳,获得10
5分钟前
优雅草丛完成签到,获得积分10
5分钟前
5分钟前
慕青应助eureka采纳,获得10
5分钟前
xliiii发布了新的文献求助10
5分钟前
6分钟前
xliiii完成签到,获得积分10
6分钟前
6分钟前
Bo发布了新的文献求助10
6分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3484427
求助须知:如何正确求助?哪些是违规求助? 3073435
关于积分的说明 9130961
捐赠科研通 2765049
什么是DOI,文献DOI怎么找? 1517559
邀请新用户注册赠送积分活动 702166
科研通“疑难数据库(出版商)”最低求助积分说明 701166