Robust Nonconvex Sparse Optimization for Impact Force Identification

解算器 正规化(语言学) 稳健性(进化) 数学优化 计算机科学 正多边形 凸优化 算法 数学 应用数学 人工智能 几何学 生物化学 基因 化学
作者
Junjiang Liu,Baijie Qiao,Yanan Wang,Weifeng He,Xuefeng Chen
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:21 (02)
标识
DOI:10.1142/s0219876223500275
摘要

The inherent sparse structure of impact forces has garnered considerable attention in the field of impact force identification. However, conventional convex sparse regularization methods, including the widely used [Formula: see text] regularization, often encounter challenges such as underestimation of impact amplitudes and biased estimations. To address these limitations, we propose a robust nonconvex sparse regularization method for impact force identification. The key advantage of our method is the simultaneous retention of robustness and unbiasedness. The robustness of our method is primarily achieved through an efficient solver developed within the alternating direction method of multipliers (ADMM) framework. By combining convex and nonconvex strategies, the ADMM solver separates the intractable nonconvex problem into more manageable convex sub-problems. Additionally, the ADMM solver incorporates the firm-thresholding operator, which ensures an unbiased amplitude distribution and preserves the impact amplitudes. With a sparse and under-determined sensor configuration, our proposed method enables simultaneous impact localization and time-history reconstruction. We comprehensively demonstrate the algorithmic performance through a series of numerical simulations and laboratory experiments on typical composite structures. The comparative results clearly indicate that our proposed approach achieves significant improvements in identification accuracy compared to classical sparse regularization methods, such as [Formula: see text] and [Formula: see text] regularization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胡33完成签到,获得积分10
刚刚
风趣的灵枫完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
Andrew发布了新的文献求助10
2秒前
2秒前
Fang Xianxin完成签到,获得积分10
3秒前
高高晓啸发布了新的文献求助10
3秒前
3秒前
light123完成签到,获得积分10
4秒前
研友_LOqqmZ发布了新的文献求助10
4秒前
充电宝应助碧蓝问玉采纳,获得10
4秒前
思源应助范峰源采纳,获得15
5秒前
FashionBoy应助阳光的天与采纳,获得10
5秒前
5秒前
SU Edward发布了新的文献求助10
5秒前
大模型应助韶邑采纳,获得10
5秒前
起司猫完成签到 ,获得积分10
6秒前
浩然山河完成签到,获得积分10
6秒前
wanci应助悲凉的老虎采纳,获得10
6秒前
破空发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
香蕉觅云应助perdgs采纳,获得10
10秒前
10秒前
无极微光应助jelly采纳,获得20
10秒前
量子星尘发布了新的文献求助10
11秒前
小树发布了新的文献求助10
11秒前
11秒前
清醒完成签到,获得积分10
11秒前
12秒前
12秒前
dd完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
我是老大应助Pengcheng采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718168
求助须知:如何正确求助?哪些是违规求助? 5250844
关于积分的说明 15284812
捐赠科研通 4868418
什么是DOI,文献DOI怎么找? 2614132
邀请新用户注册赠送积分活动 1564020
关于科研通互助平台的介绍 1521476