Entangled optical quantum imaging method based on adaptive block compressed sampling

计算机科学 图像质量 压缩传感 计算机视觉 采样(信号处理) 人工智能 熵(时间箭头) 峰值信噪比 块(置换群论) 算法 光学 图像(数学) 数学 物理 几何学 滤波器(信号处理) 量子力学
作者
Mu Zhou,Zhongyin Hu,Liangbo Xie,Jingyang Cao
出处
期刊:Optik [Elsevier]
卷期号:290: 171322-171322 被引量:2
标识
DOI:10.1016/j.ijleo.2023.171322
摘要

In the process of entangled optical quantum imaging, the Digital Micromirror Device (DMD) sampling mode affects imaging efficiency, and in the process of image sparse reconstruction, the use of a fixed sampling matrix affects the quality of image reconstruction. In this circumstance, this paper proposes an entangled optical quantum imaging method based on Adaptive Block Compressed Sampling with Two-Dimensional Information Entropy (ABCS-2DIE), which measures the texture details of the image through the two-dimensional information entropy of the image, adaptively allocates the sampling rate for each image block according to the texture distribution of the image, and designs the corresponding sampling matrix to sparsely sample the reference light. In addition, coincidence counting between the reference and signal light is considered in the reconstruction algorithm to obtain the target image. Experimental results show that compared with the Overall Compressive Sampling (OCS) method, the proposed method greatly shortens the imaging time and significantly improves the imaging quality. Besides, compared with the Fixed Block Compressed Sampling (FBCS) method, the image obtained by the proposed method has obvious improvement in visual effect, and the corresponding Peak Signal-to-Noise Ratio (PSNR) is improved by 2–4 dB with a slight increase in computation complexity. In all, the proposed method can make good use of the texture features of the image, effectively improving the quality of quantum imaging while reducing the imaging time.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣藏花发布了新的文献求助10
刚刚
刚刚
zzz完成签到,获得积分10
刚刚
zss发布了新的文献求助10
刚刚
刚刚
1秒前
guozi发布了新的文献求助10
1秒前
1秒前
王雯雯完成签到,获得积分10
1秒前
wyw完成签到,获得积分10
2秒前
2秒前
李爱国应助纪忆寒采纳,获得20
2秒前
yang发布了新的文献求助10
2秒前
斧王发布了新的文献求助80
2秒前
可爱的函函应助kkk采纳,获得10
3秒前
Zzoey关注了科研通微信公众号
3秒前
qxqy6678发布了新的文献求助10
3秒前
3秒前
Owen应助Cgy采纳,获得10
3秒前
3秒前
悦耳怜珊发布了新的文献求助10
4秒前
香蕉静芙发布了新的文献求助10
4秒前
李喜喜发布了新的文献求助10
4秒前
4秒前
zhonglv7应助制药小兵采纳,获得10
5秒前
wanci应助典雅的绿凝采纳,获得10
5秒前
金鱼发布了新的文献求助20
5秒前
5秒前
CC发布了新的文献求助10
5秒前
5秒前
zjx完成签到,获得积分10
5秒前
CipherSage应助灵巧幻嫣采纳,获得10
5秒前
共享精神应助黄伟凯采纳,获得10
5秒前
5秒前
6秒前
6秒前
7秒前
小熊维C完成签到,获得积分10
7秒前
YC完成签到,获得积分10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534