Artificial Intelligence and Machine Learning in Nanomedicine. What Do We Expect for 2030?

人工智能 纳米医学 图书馆学 计算机科学 物理 量子力学 纳米颗粒
作者
João Paulo Figueiró Longo,Paulo Eduardo Narcizo de Souza,P.C. Morais
出处
期刊:Nanomedicine 卷期号:18 (16): 1041-1043 被引量:2
标识
DOI:10.2217/nnm-2023-0084
摘要

NanomedicineAhead of Print EditorialArtificial intelligence and machine learning in nanomedicine. What do we expect for 2030?João Paulo Figueiró Longo, Paulo Eduardo Narcizo de Souza & Paulo César MoraisJoão Paulo Figueiró Longo *Author for correspondence: Tel.: +55 613 107 3087; E-mail Address: jplongo82@gmail.comhttps://orcid.org/0000-0002-5154-7263Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, Brazil, Paulo Eduardo Narcizo de Souza https://orcid.org/0000-0002-4289-8678Institute of Physics, University of Brasília, Brasília, 70910-900, Brazil & Paulo César Morais https://orcid.org/0000-0001-6181-7709Institute of Physics, University of Brasília, Brasília, 70910-900, BrazilBiotechnology and Genomic Sciences, Catholic University of Brasília, Brasília, 70790-160, BrazilPublished Online:14 Aug 2023https://doi.org/10.2217/nnm-2023-0084AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: artificial intelligencedecision-makingeditorialinnovationmachine learningnanomedicineperspectivespredictionpublicationtechnologyReferences1. Shiffrin R, Mitchell M. Probing the psychology of AI models. Proc. Natl Acad. Sci. USA 120(10), e2300963120 (2023).Crossref, Medline, CAS, Google Scholar2. Jakesch M, Hancock JT, Naaman M. Human heuristics for AI-generated language are flawed. Proc. Natl Acad. Sci. USA 120(11), e2208839120 (2023).Crossref, Medline, CAS, Google Scholar3. Stillman NR, Kovacevic M, Balaz I et al. In silico modelling of cancer nanomedicine, across scales and transport barriers. NPJ Comput. Mater. 6(1), 92–98 (2020).Crossref, CAS, Google Scholar4. Gupta R, Srivastava D, Sahu M et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers 25(3), 1315–1360 (2021).Crossref, Medline, CAS, Google Scholar5. Lorenc A, Mendes BB, Conniot J et al. Machine learning for next-generation nanotechnology in healthcare. Matter 4(10), 3078–3080 (2021).Crossref, CAS, Google Scholar6. Moud AA. Recent advances in utility of artificial intelligence towards multiscale colloidal based materials design. Colloid Interface Sci. Commun. 47, 100595 (2022).Crossref, Google Scholar7. Singh AV, Varma M, Laux P et al. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Arch. Toxicol. 97(4), 963–979 (2023).Crossref, Medline, CAS, Google Scholar8. de Oliveira JV, Oliveira da Rocha MC, de Sousa-Junior AA et al. Tumor vascular heterogeneity and the impact of subtumoral nanoemulsion biodistribution. Nanomedicine 17(27), 2073–2088 (2022).Link, CAS, Google Scholar9. Mahmoudi M, Landry MP, Moore A et al. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. (2023) (In press).Crossref, Medline, Google Scholar10. Radicchi MA, de Oliveira JV, Pova Mendes AC et al. Lipid nanoemulsion passive tumor accumulation dependence on tumor stage and anatomical location: a new mathematical model for in vivo imaging biodistribution study. J. Mater. Chem. B 6(44), 7306–7316 (2018).Crossref, Medline, CAS, Google Scholar11. Moret-Bonillo V. Can artificial intelligence benefit from quantum computing? Prog. Artificial Intell. 3, 89–105 (2015).Crossref, Google Scholar12. Singh AV, Ansari MHD, Rosenkranz D et al. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv. Healthc. Mater. 9(17), 901862–901881 (2020).Crossref, Google ScholarFiguresReferencesRelatedDetails Ahead of Print STAY CONNECTED Metrics Downloaded 0 times History Received 21 March 2023 Accepted 6 July 2023 Published online 14 August 2023 Information© 2023 Future Medicine LtdKeywordsartificial intelligencedecision-makingeditorialinnovationmachine learningnanomedicineperspectivespredictionpublicationtechnologyAcknowledgmentsWe acknowledge ChatGPT (https://chat.openai.com/) for its assistance in conducting minor language revisions for this editorial.Financial & competing interests disclosureThis article is part of two research projects supported by the Brazilian agency Fundação de Apoio à Pesquisa do Distrito Federal/Brazil (no. 00193-00000734/2021-75) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (no. 305617/2022-2). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助11采纳,获得10
3秒前
4秒前
轻风发布了新的文献求助10
5秒前
田様应助尺素寸心采纳,获得10
5秒前
大气青枫发布了新的文献求助10
8秒前
汉堡包应助cui采纳,获得10
10秒前
13秒前
18秒前
ZrAug21发布了新的文献求助10
19秒前
学术小天才完成签到 ,获得积分10
19秒前
23秒前
25秒前
狸毛毛完成签到,获得积分10
27秒前
称心嵩完成签到,获得积分20
28秒前
28秒前
lulu完成签到,获得积分10
29秒前
34秒前
cui发布了新的文献求助10
35秒前
35秒前
guoyx完成签到,获得积分10
36秒前
36秒前
yxy完成签到,获得积分10
37秒前
小二郎应助义气的灯泡采纳,获得10
37秒前
39秒前
浴火重生发布了新的文献求助10
39秒前
星辰大海应助Radon采纳,获得30
39秒前
wdnyrrc发布了新的文献求助80
40秒前
彭于晏应助抹茶肥肠采纳,获得30
42秒前
42秒前
打打应助guoyx采纳,获得20
42秒前
43秒前
45秒前
卡戎529发布了新的文献求助10
46秒前
47秒前
钮以南发布了新的文献求助10
48秒前
50秒前
雪球1248完成签到 ,获得积分10
52秒前
乐乐应助和谐外套采纳,获得10
53秒前
厉亮关注了科研通微信公众号
55秒前
粥粥卷完成签到,获得积分10
55秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138618
求助须知:如何正确求助?哪些是违规求助? 2789599
关于积分的说明 7791655
捐赠科研通 2445949
什么是DOI,文献DOI怎么找? 1300780
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079