摘要
NanomedicineAhead of Print EditorialArtificial intelligence and machine learning in nanomedicine. What do we expect for 2030?João Paulo Figueiró Longo, Paulo Eduardo Narcizo de Souza & Paulo César MoraisJoão Paulo Figueiró Longo *Author for correspondence: Tel.: +55 613 107 3087; E-mail Address: jplongo82@gmail.comhttps://orcid.org/0000-0002-5154-7263Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, 70910-900, Brasília, Brazil, Paulo Eduardo Narcizo de Souza https://orcid.org/0000-0002-4289-8678Institute of Physics, University of Brasília, Brasília, 70910-900, Brazil & Paulo César Morais https://orcid.org/0000-0001-6181-7709Institute of Physics, University of Brasília, Brasília, 70910-900, BrazilBiotechnology and Genomic Sciences, Catholic University of Brasília, Brasília, 70790-160, BrazilPublished Online:14 Aug 2023https://doi.org/10.2217/nnm-2023-0084AboutSectionsView ArticleView Full TextPDF/EPUB ToolsAdd to favoritesDownload CitationsTrack CitationsPermissionsReprints ShareShare onFacebookTwitterLinkedInRedditEmail View articleKeywords: artificial intelligencedecision-makingeditorialinnovationmachine learningnanomedicineperspectivespredictionpublicationtechnologyReferences1. Shiffrin R, Mitchell M. Probing the psychology of AI models. Proc. Natl Acad. Sci. USA 120(10), e2300963120 (2023).Crossref, Medline, CAS, Google Scholar2. Jakesch M, Hancock JT, Naaman M. Human heuristics for AI-generated language are flawed. Proc. Natl Acad. Sci. USA 120(11), e2208839120 (2023).Crossref, Medline, CAS, Google Scholar3. Stillman NR, Kovacevic M, Balaz I et al. In silico modelling of cancer nanomedicine, across scales and transport barriers. NPJ Comput. Mater. 6(1), 92–98 (2020).Crossref, CAS, Google Scholar4. Gupta R, Srivastava D, Sahu M et al. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Mol. Divers 25(3), 1315–1360 (2021).Crossref, Medline, CAS, Google Scholar5. Lorenc A, Mendes BB, Conniot J et al. Machine learning for next-generation nanotechnology in healthcare. Matter 4(10), 3078–3080 (2021).Crossref, CAS, Google Scholar6. Moud AA. Recent advances in utility of artificial intelligence towards multiscale colloidal based materials design. Colloid Interface Sci. Commun. 47, 100595 (2022).Crossref, Google Scholar7. Singh AV, Varma M, Laux P et al. Artificial intelligence and machine learning disciplines with the potential to improve the nanotoxicology and nanomedicine fields: a comprehensive review. Arch. Toxicol. 97(4), 963–979 (2023).Crossref, Medline, CAS, Google Scholar8. de Oliveira JV, Oliveira da Rocha MC, de Sousa-Junior AA et al. Tumor vascular heterogeneity and the impact of subtumoral nanoemulsion biodistribution. Nanomedicine 17(27), 2073–2088 (2022).Link, CAS, Google Scholar9. Mahmoudi M, Landry MP, Moore A et al. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. (2023) (In press).Crossref, Medline, Google Scholar10. Radicchi MA, de Oliveira JV, Pova Mendes AC et al. Lipid nanoemulsion passive tumor accumulation dependence on tumor stage and anatomical location: a new mathematical model for in vivo imaging biodistribution study. J. Mater. Chem. B 6(44), 7306–7316 (2018).Crossref, Medline, CAS, Google Scholar11. Moret-Bonillo V. Can artificial intelligence benefit from quantum computing? Prog. Artificial Intell. 3, 89–105 (2015).Crossref, Google Scholar12. Singh AV, Ansari MHD, Rosenkranz D et al. Artificial intelligence and machine learning in computational nanotoxicology: unlocking and empowering nanomedicine. Adv. Healthc. Mater. 9(17), 901862–901881 (2020).Crossref, Google ScholarFiguresReferencesRelatedDetails Ahead of Print STAY CONNECTED Metrics Downloaded 0 times History Received 21 March 2023 Accepted 6 July 2023 Published online 14 August 2023 Information© 2023 Future Medicine LtdKeywordsartificial intelligencedecision-makingeditorialinnovationmachine learningnanomedicineperspectivespredictionpublicationtechnologyAcknowledgmentsWe acknowledge ChatGPT (https://chat.openai.com/) for its assistance in conducting minor language revisions for this editorial.Financial & competing interests disclosureThis article is part of two research projects supported by the Brazilian agency Fundação de Apoio à Pesquisa do Distrito Federal/Brazil (no. 00193-00000734/2021-75) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (no. 305617/2022-2). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.No writing assistance was utilized in the production of this manuscript.PDF download