Eff-AQI: An Efficient CNN-Based Model for Air Pollution Estimation: A Study Case in India

空气污染 估计 计算机科学 大气模式 污染 环境科学 气象学 地理 工程类 系统工程 生态学 化学 有机化学 生物
作者
Sapdo Utomo,Adarsh Rouniyar,Guo Hao Jiang,Chun Hao Chang,Kai Chun Tang,Hsiu-Chun Hsu,Pao‐Ann Hsiung
标识
DOI:10.1145/3582515.3609531
摘要

One of the most dangerous problems facing humanity is air pollution. According to GBD estimates, poor air quality and indoor air pollution cause nearly 2 million premature deaths in India. Air quality monitoring stations are expensive to install. These issues require a cost-effective resolution. India's energy infrastructure requires a low-power solution in order to prevent new issues while resolving old ones. Image-based air pollution detection using artificial intelligence has become a popular option. Nevertheless, two issues remain: There are few image-based air pollution data sets. Existing methods utilize a model with numerous parameters, which requires a great deal of processing power. Based on that, we developed Eff-AQI, a reliable artificial intelligence model with 1.9 million parameters. The proposed model could obtain the following results: 9.56 RMSE, 0.99 R2, 89.92% balanced accuracy, and 89.38% accuracy for AQI estimation; 14.62 RMSE, 0.99 R2, 90.56% balanced accuracy, and 91.83% accuracy for PM2.5 estimation; and 14.40 RMSE, 0.98 R2, 96.25% balanced accuracy, and 95.42% accuracy for PM10 estimation. The proposed model outperformed DOViT, the model with the highest accuracy among all surveyed SoTAs, by 2.64 points, and it has 46.32 times smaller parameters compared to DOViT. The proposed model can achieve the same R2 score with 54.16 times smaller parameters than Ensemble DNN. We also make available on Kaggle the novel air pollution image data with the corresponding labels: AQI, PM2.5, PM10, O3, CO, SO2, and NO2. The investigation revealed that the majority of SoTAs could utilize the dataset to enhance performance. The proposed model is more accurate and has fewer parameters than SoTAs. Environmental sustainability and reduced pollution are also involved. Increasing society's or stakeholders' high-confidence understanding of air pollution situations in order to develop effective and efficient mitigation solutions. This initiative is beneficial to AI for the social good and the Sustainable Development Goals, especially SDG 3, "Good Health and Well-Being," and SDG 11, "Sustainable Cities and Communities."
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
幽默的宛白关注了科研通微信公众号
2秒前
上岸发布了新的文献求助10
2秒前
深念发布了新的文献求助10
3秒前
万能图书馆应助nn采纳,获得10
3秒前
derder发布了新的文献求助30
4秒前
小龙发布了新的文献求助10
5秒前
5秒前
5秒前
zzz完成签到,获得积分10
6秒前
lvzhechen完成签到,获得积分10
7秒前
8秒前
赘婿应助舒适路人采纳,获得10
10秒前
跳不起来的大神完成签到 ,获得积分10
11秒前
Akim应助整齐百褶裙采纳,获得10
12秒前
徐若楠发布了新的文献求助10
12秒前
CodeCraft应助刘旺林采纳,获得10
13秒前
13秒前
zqh发布了新的文献求助10
14秒前
牛仔很忙完成签到 ,获得积分10
15秒前
mtf完成签到,获得积分10
16秒前
17秒前
豆腐kkkkk发布了新的文献求助10
18秒前
Xiaoxiao应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
Leif应助科研通管家采纳,获得20
18秒前
酷波er应助科研通管家采纳,获得10
18秒前
dawei完成签到,获得积分20
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
ding应助科研通管家采纳,获得10
19秒前
Owen应助科研通管家采纳,获得10
19秒前
NexusExplorer应助科研通管家采纳,获得10
19秒前
赘婿应助科研通管家采纳,获得10
19秒前
CipherSage应助科研通管家采纳,获得10
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
上官若男应助科研通管家采纳,获得10
19秒前
maox1aoxin应助科研通管家采纳,获得50
19秒前
传奇3应助科研通管家采纳,获得10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
Novel synthetic routes for multiple bond formation between Si, Ge, and Sn and the d- and p-block elements 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3525919
求助须知:如何正确求助?哪些是违规求助? 3106412
关于积分的说明 9280139
捐赠科研通 2803992
什么是DOI,文献DOI怎么找? 1539144
邀请新用户注册赠送积分活动 716481
科研通“疑难数据库(出版商)”最低求助积分说明 709454