Evaluation of skin sympathetic nervous activity for classification of intracerebral hemorrhage and outcome prediction

医学 脑出血 心率变异性 自主神经系统 信号(编程语言) 近似熵 心脏病学 心率 人工智能 模式识别(心理学) 内科学 计算机科学 血压 蛛网膜下腔出血 程序设计语言
作者
Yantao Xing,Hongyi Cheng,Chenxi Yang,Zhijun Xiao,Chang Yan,FeiFei Chen,Jiayi Li,Yike Zhang,Chang Cui,Jianqing Li,Chengyu Liu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:166: 107397-107397 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107397
摘要

Classification and outcome prediction of intracerebral hemorrhage (ICH) is critical for improving the survival rate of patients. Early or delayed neurological deterioration is common in ICH patients, which may lead to changes in the autonomic nervous system (ANS). Therefore, we proposed a new framework for ICH classification and outcome prediction based on skin sympathetic nervous activity (SKNA) signals. A customized measurement device presented in our previous papers was used to collect data. 117 subjects (50 healthy control subjects and 67 ICH patients) were recruited for this study to obtain their 5-min electrocardiogram (ECG) and SKNA signals. We extracted the signal's time-domain, frequency-domain, and nonlinear features and analyzed their differences between healthy control subjects and ICH patients. Subsequently, we established the ICH classification and outcome evaluation model based on the eXtreme Gradient Boosting (XGBoost). In addition, heart rate variability (HRV) as an ANS assessment method was also included as a comparison method in this study. The results showed significant differences in most features of the SKNA signal between healthy control subjects and ICH patients. The ICH patients with good outcomes have a higher change rate and complexity of SKNA signal than those with bad outcomes. In addition, the accuracy of the model for ICH classification and outcome prediction based on the SKNA signal was more than 91% and 83%, respectively. The ICH classification and outcome prediction based on the SKNA signal proved to be a feasible method in this study. Furthermore, the features of change rate and complexity, such as entropy measures, can be used to characterize the difference in SKNA signals of different groups. The method can potentially provide a new tool for rapid classification and outcome prediction of ICH patients. Index Terms—intracerebral hemorrhage (ICH), skin sympathetic nervous activity (SKNA), classification, outcome prediction, cardiovascular and cerebrovascular diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
dilli完成签到 ,获得积分10
刚刚
cwy发布了新的文献求助10
2秒前
wz发布了新的文献求助10
2秒前
balzacsun发布了新的文献求助10
4秒前
JamesPei应助星星采纳,获得10
4秒前
5秒前
5秒前
laodie完成签到,获得积分10
6秒前
彭于晏应助ipeakkka采纳,获得10
6秒前
6秒前
敏感的芷发布了新的文献求助10
6秒前
susan发布了新的文献求助10
6秒前
7秒前
李爱国应助轻松的贞采纳,获得10
7秒前
wz完成签到,获得积分10
8秒前
子川完成签到 ,获得积分10
8秒前
怕孤独的鹭洋完成签到,获得积分10
8秒前
9秒前
耍酷的夏云完成签到,获得积分10
9秒前
laodie发布了新的文献求助10
10秒前
10秒前
小达完成签到,获得积分10
10秒前
nenoaowu发布了新的文献求助10
10秒前
文章要有性价比完成签到,获得积分10
11秒前
俏皮半烟完成签到,获得积分10
11秒前
Aki发布了新的文献求助10
11秒前
111完成签到,获得积分10
13秒前
耗尽完成签到,获得积分10
13秒前
烂漫驳发布了新的文献求助10
15秒前
轻松的贞完成签到,获得积分10
16秒前
李健应助balzacsun采纳,获得10
17秒前
轻松的悟空完成签到 ,获得积分10
19秒前
susan完成签到,获得积分10
20秒前
0029完成签到,获得积分10
22秒前
Aki完成签到,获得积分10
22秒前
22秒前
23秒前
24秒前
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824