COVID-19 Pneumonia Classification with Transformer from Incomplete Modalities

模式 人工智能 计算机科学 卷积神经网络 2019年冠状病毒病(COVID-19) 医学影像学 稳健性(进化) 模式识别(心理学) 模态(人机交互) 放射科 医学 病理 疾病 传染病(医学专业) 社会学 化学 基因 生物化学 社会科学
作者
Eduard Lloret Carbonell,Yiqing Shen,Xin Yang,Jing Ke
出处
期刊:Lecture Notes in Computer Science 卷期号:: 379-388 被引量:2
标识
DOI:10.1007/978-3-031-43904-9_37
摘要

COVID-19 is a viral disease that causes severe acute respiratory inflammation. Although with less death rate, its increasing infectivity rate, together with its acute symptoms and high number of infections, is still attracting growing interests in the image analysis of COVID-19 pneumonia. Current accurate diagnosis by radiologists requires two modalities of X-Ray and Computed Tomography (CT) images from one patient. However, one modality might miss in clinical practice. In this study, we propose a novel multi-modality model to integrate X-Ray and CT data to further increase the versatility and robustness of the AI-assisted COVID-19 pneumonia diagnosis that can tackle incomplete modalities. We develop a Convolutional Neural Networks (CNN) and Transformers hybrid architecture, which extracts extensive features from the distinct data modalities. This classifier is designed to be able to predict COVID-19 images with X-Ray image, or CT image, or both, while at the same time preserving the robustness when missing modalities are found. Conjointly, a new method is proposed to fuse three-dimensional and two-dimensional images, which further increase the feature extraction and feature correlation of the input data. Thus, verified with a real-world public dataset of BIMCV-COVID19, the model outperform state-of-the-arts with the AUC score of 79.93%. Clinically, the model has important medical significance for COVID-19 examination when some image modalities are missing, offering relevant flexibility to medical teams. Besides, the structure may be extended to other chest abnormalities to be detected by X-ray or CT examinations. Code is available at https://github.com/edurbi/MICCAI2023 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Gtingting关注了科研通微信公众号
2秒前
llll完成签到,获得积分10
2秒前
涨涨涨发布了新的文献求助10
3秒前
Galaxy完成签到,获得积分10
3秒前
英吉利25发布了新的文献求助10
5秒前
5秒前
7秒前
科研通AI2S应助凶狠的便当采纳,获得10
8秒前
华仔应助高工采纳,获得10
9秒前
10秒前
深情安青应助诸缘郡采纳,获得10
10秒前
10秒前
wyblobin完成签到,获得积分10
11秒前
努力学习完成签到,获得积分10
11秒前
BaBa发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
Wuc发布了新的文献求助10
13秒前
还没想好完成签到,获得积分10
15秒前
DaLu完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
lenon完成签到,获得积分10
18秒前
Gtingting发布了新的文献求助10
19秒前
研友_Zl1w68完成签到,获得积分20
19秒前
sumuuchen完成签到,获得积分20
19秒前
kathleen完成签到,获得积分10
19秒前
标致绮露完成签到,获得积分10
20秒前
luochen完成签到,获得积分10
20秒前
孙晓婷完成签到,获得积分10
20秒前
21秒前
hana完成签到 ,获得积分10
22秒前
23秒前
标致绮露发布了新的文献求助10
23秒前
橙子abcy完成签到,获得积分10
23秒前
魔幻的心情完成签到,获得积分10
24秒前
深情安青应助sjm1311218采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966458
求助须知:如何正确求助?哪些是违规求助? 3511940
关于积分的说明 11161056
捐赠科研通 3246726
什么是DOI,文献DOI怎么找? 1793483
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403