How to Deploy Robotic Mobile Fulfillment Systems

工作站 调度(生产过程) 计算机科学 机器人 时间范围 运筹学 作业车间调度 移动机器人 工业工程 数学优化 实时计算 地铁列车时刻表 分布式计算 人工智能 工程类 数学 操作系统
作者
Lu Zhen,Zheyi Tan,René de Koster,Shuaian Wang
出处
期刊:Transportation Science [Institute for Operations Research and the Management Sciences]
被引量:4
标识
DOI:10.1287/trsc.2022.0265
摘要

Many warehouses involved in e-commerce order fulfillment use robotic mobile fulfillment systems. Because demand and variability can be high, scheduling orders, robots, and storage pods in interaction with manual workstations are critical to obtaining high performance. Simultaneously, the scheduling problem is extremely complicated because of interactions between decisions, many of which must be taken timely because of short planning horizons and a constantly changing environment. This paper models all such scheduling decisions in combination to minimize order fulfillment time. We propose two decision methods for the above scheduling problem. The models batch the orders using different batching methods and assign orders and batches to pods and workstations in sequence and robots to jobs. Order picking and stock replenishment operations are included in the models. We conduct numerical experiments based on a real-world case to validate the efficacy and efficiency of the model and algorithm. Instances with 14 workstations, 400 orders, 300 stock-keeping units (SKUs), 160 pods, and 160 robots can be solved to near optimality within four minutes. Our methods can be applied to large instances, for example, using a rolling horizon. Because our model can be solved relatively fast, it can be used to take managerial decisions and obtain executive insights. Our results show that making integrated decisions, even when done heuristically, is more beneficial than sequential, isolated optimization. We also find that positioning pick stations close together along one of the system’s long sides is efficient. The replenishment stations can be grouped along another side. Another finding is that SKU diversity per pod and SKU dispersion over pods have strong and positive impacts on the total completion time of handling order batches. Funding: This work was supported by National Natural Science Foundation of China [72025103, 72361137001, 71831008, 72071173] and the Research Grants Council of the Hong Kong Special Administrative Region, China [HKSAR RGC TRS T32-707/22-N]. Supplemental Material: The e-companion is available at https://doi.org/10.1287/trsc.2022.0265 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
严惜发布了新的文献求助10
刚刚
研学发布了新的文献求助10
1秒前
所所应助等等采纳,获得10
2秒前
劲秉应助光亮元枫采纳,获得30
4秒前
4秒前
bkagyin应助huzhy采纳,获得10
5秒前
冷艳的海白完成签到,获得积分10
6秒前
赘婿应助万事顺利采纳,获得10
6秒前
7秒前
风中虔纹完成签到,获得积分10
7秒前
7秒前
醉熏的井发布了新的文献求助10
7秒前
8秒前
龙歪歪完成签到 ,获得积分10
9秒前
9秒前
9秒前
彩色德天发布了新的文献求助10
10秒前
JYZ发布了新的文献求助10
11秒前
LightFlash发布了新的文献求助10
12秒前
13秒前
桐桐应助amumu采纳,获得10
13秒前
14秒前
研友_8KX15L发布了新的文献求助30
14秒前
脑袋空空发布了新的文献求助10
15秒前
15秒前
JamesPei应助沉默的西牛采纳,获得10
15秒前
等等完成签到,获得积分10
16秒前
研学完成签到,获得积分10
16秒前
过奖啦完成签到,获得积分10
16秒前
小L发布了新的文献求助10
17秒前
18秒前
19秒前
22秒前
丘比特应助Miaka采纳,获得10
22秒前
ClarkClarkson发布了新的文献求助10
23秒前
言小鱼完成签到,获得积分10
25秒前
快哒哒哒发布了新的文献求助10
29秒前
研友_8KX15L发布了新的文献求助30
30秒前
30秒前
31秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206987
求助须知:如何正确求助?哪些是违规求助? 2856316
关于积分的说明 8104204
捐赠科研通 2521502
什么是DOI,文献DOI怎么找? 1354661
科研通“疑难数据库(出版商)”最低求助积分说明 642050
邀请新用户注册赠送积分活动 613292