An extremely lightweight CNN model for the diagnosis of chest radiographs in resource‐constrained environments

射线照相术 计算机科学 医学影像学 放射科 资源(消歧) 医学物理学 医学 核医学 人工智能 计算机网络
作者
Gautam Kumar,Nirbhay Sharma,Angshuman Paul
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7568-7578
标识
DOI:10.1002/mp.16722
摘要

Abstract Background In recent years, deep learning methods have been successfully used for chest x‐ray diagnosis. However, such deep learning models often contain millions of trainable parameters and have high computation demands. As a result, providing the benefits of cutting‐edge deep learning technology to areas with low computational resources would not be easy. Computationally lightweight deep learning models may potentially alleviate this problem. Purpose We aim to create a computationally lightweight model for the diagnosis of chest radiographs. Our model has only 0.14M parameters and 550 KB size. These make the proposed model potentially useful for deployment in resource‐constrained environments. Methods We fuse the concept of depthwise convolutions with squeeze and expand blocks to design the proposed architecture. The basic building block of our model is called D epthwise C onvolution I n S queeze and E xpand (DCISE) block. Using these DCISE blocks, we design an extremely lightweight convolutional neural network model (ExLNet), a computationally lightweight convolutional neural network (CNN) model for chest x‐ray diagnosis. Results We perform rigorous experiments on three publicly available datasets, namely, National Institutes of Health (NIH), VinBig ,and Chexpert for binary and multi‐class classification tasks. We train the proposed architecture on NIH dataset and evaluate the performance on VinBig and Chexpert datasets. The proposed method outperforms several state‐of‐the‐art approaches for both binary and multi‐class classification tasks despite having a significantly less number of parameters. Conclusions We design a lightweight CNN architecture for the chest x‐ray classification task by introducing ExLNet which uses a novel DCISE blocks to reduce the computational burden. We show the effectiveness of the proposed architecture through various experiments performed on publicly available datasets. The proposed architecture shows consistent performance in binary as well as multi‐class classification tasks and outperforms other lightweight CNN architectures. Due to a significant reduction in the computational requirements, our method can be useful for resource‐constrained clinical environment as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Fox发布了新的文献求助10
2秒前
4秒前
wzq发布了新的文献求助30
5秒前
5秒前
吴凡完成签到,获得积分10
7秒前
Fox完成签到,获得积分10
7秒前
科研通AI5应助研究僧-卓采纳,获得10
8秒前
肉肉肉发布了新的文献求助10
10秒前
烂漫映之完成签到 ,获得积分10
11秒前
嘟嘟完成签到 ,获得积分10
12秒前
小女完成签到,获得积分10
14秒前
14秒前
林白生完成签到 ,获得积分10
15秒前
汉堡包应助Luo采纳,获得10
17秒前
18秒前
研究僧-卓发布了新的文献求助10
23秒前
星辰大海应助眼睛大墨镜采纳,获得10
25秒前
26秒前
Orange应助suchui采纳,获得10
26秒前
没有密码关注了科研通微信公众号
29秒前
JamesPei应助zhuge采纳,获得10
29秒前
肉肉肉完成签到,获得积分10
29秒前
29秒前
dsfsd完成签到,获得积分10
30秒前
31秒前
32秒前
涵涵涵hh发布了新的文献求助10
32秒前
33秒前
36秒前
38秒前
lvlvlvsh发布了新的文献求助10
40秒前
40秒前
LL完成签到,获得积分10
41秒前
44秒前
Huang完成签到,获得积分10
44秒前
suchui发布了新的文献求助10
45秒前
Dean举报Komorebi求助涉嫌违规
45秒前
今后应助小可爱采纳,获得10
45秒前
jeep先生完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4545514
求助须知:如何正确求助?哪些是违规求助? 3977133
关于积分的说明 12315793
捐赠科研通 3645296
什么是DOI,文献DOI怎么找? 2007495
邀请新用户注册赠送积分活动 1043068
科研通“疑难数据库(出版商)”最低求助积分说明 931929