An extremely lightweight CNN model for the diagnosis of chest radiographs in resource‐constrained environments

射线照相术 计算机科学 医学影像学 放射科 资源(消歧) 医学物理学 医学 核医学 人工智能 计算机网络
作者
Gautam Kumar,Nirbhay Sharma,Angshuman Paul
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7568-7578
标识
DOI:10.1002/mp.16722
摘要

Abstract Background In recent years, deep learning methods have been successfully used for chest x‐ray diagnosis. However, such deep learning models often contain millions of trainable parameters and have high computation demands. As a result, providing the benefits of cutting‐edge deep learning technology to areas with low computational resources would not be easy. Computationally lightweight deep learning models may potentially alleviate this problem. Purpose We aim to create a computationally lightweight model for the diagnosis of chest radiographs. Our model has only 0.14M parameters and 550 KB size. These make the proposed model potentially useful for deployment in resource‐constrained environments. Methods We fuse the concept of depthwise convolutions with squeeze and expand blocks to design the proposed architecture. The basic building block of our model is called D epthwise C onvolution I n S queeze and E xpand (DCISE) block. Using these DCISE blocks, we design an extremely lightweight convolutional neural network model (ExLNet), a computationally lightweight convolutional neural network (CNN) model for chest x‐ray diagnosis. Results We perform rigorous experiments on three publicly available datasets, namely, National Institutes of Health (NIH), VinBig ,and Chexpert for binary and multi‐class classification tasks. We train the proposed architecture on NIH dataset and evaluate the performance on VinBig and Chexpert datasets. The proposed method outperforms several state‐of‐the‐art approaches for both binary and multi‐class classification tasks despite having a significantly less number of parameters. Conclusions We design a lightweight CNN architecture for the chest x‐ray classification task by introducing ExLNet which uses a novel DCISE blocks to reduce the computational burden. We show the effectiveness of the proposed architecture through various experiments performed on publicly available datasets. The proposed architecture shows consistent performance in binary as well as multi‐class classification tasks and outperforms other lightweight CNN architectures. Due to a significant reduction in the computational requirements, our method can be useful for resource‐constrained clinical environment as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111完成签到,获得积分10
1秒前
JamesPei应助CASLSD采纳,获得10
2秒前
田様应助童念之采纳,获得10
2秒前
5秒前
甜甜豁发布了新的文献求助10
5秒前
666应助晚风采纳,获得10
8秒前
潘啊潘完成签到 ,获得积分10
10秒前
爱因斯坦发布了新的文献求助10
10秒前
GeneYang完成签到,获得积分0
12秒前
14秒前
16秒前
17秒前
小马甲应助武雨寒采纳,获得10
17秒前
童念之发布了新的文献求助10
17秒前
ZzzZzH发布了新的文献求助10
19秒前
20秒前
合适台灯发布了新的文献求助10
21秒前
22秒前
24秒前
爱笑焦发布了新的文献求助20
25秒前
站走跑完成签到 ,获得积分10
25秒前
26秒前
27秒前
易寒完成签到,获得积分10
27秒前
鲤鱼白玉发布了新的文献求助10
29秒前
nunu发布了新的文献求助10
30秒前
30秒前
30秒前
Coraline应助反义词采纳,获得10
31秒前
小二郎应助SC采纳,获得10
32秒前
酷波er应助明明采纳,获得10
33秒前
太空工程师完成签到,获得积分10
33秒前
寒冷鹏煊发布了新的文献求助10
33秒前
武雨寒发布了新的文献求助10
35秒前
小蘑菇应助肉团子采纳,获得10
35秒前
36秒前
调皮小土豆完成签到,获得积分10
37秒前
爱笑焦完成签到,获得积分10
38秒前
39秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966955
求助须知:如何正确求助?哪些是违规求助? 3512400
关于积分的说明 11163031
捐赠科研通 3247238
什么是DOI,文献DOI怎么找? 1793759
邀请新用户注册赠送积分活动 874603
科研通“疑难数据库(出版商)”最低求助积分说明 804432