亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An extremely lightweight CNN model for the diagnosis of chest radiographs in resource‐constrained environments

射线照相术 计算机科学 医学影像学 放射科 资源(消歧) 医学物理学 医学 核医学 人工智能 计算机网络
作者
Gautam Kumar,Nirbhay Sharma,Angshuman Paul
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7568-7578
标识
DOI:10.1002/mp.16722
摘要

Abstract Background In recent years, deep learning methods have been successfully used for chest x‐ray diagnosis. However, such deep learning models often contain millions of trainable parameters and have high computation demands. As a result, providing the benefits of cutting‐edge deep learning technology to areas with low computational resources would not be easy. Computationally lightweight deep learning models may potentially alleviate this problem. Purpose We aim to create a computationally lightweight model for the diagnosis of chest radiographs. Our model has only 0.14M parameters and 550 KB size. These make the proposed model potentially useful for deployment in resource‐constrained environments. Methods We fuse the concept of depthwise convolutions with squeeze and expand blocks to design the proposed architecture. The basic building block of our model is called D epthwise C onvolution I n S queeze and E xpand (DCISE) block. Using these DCISE blocks, we design an extremely lightweight convolutional neural network model (ExLNet), a computationally lightweight convolutional neural network (CNN) model for chest x‐ray diagnosis. Results We perform rigorous experiments on three publicly available datasets, namely, National Institutes of Health (NIH), VinBig ,and Chexpert for binary and multi‐class classification tasks. We train the proposed architecture on NIH dataset and evaluate the performance on VinBig and Chexpert datasets. The proposed method outperforms several state‐of‐the‐art approaches for both binary and multi‐class classification tasks despite having a significantly less number of parameters. Conclusions We design a lightweight CNN architecture for the chest x‐ray classification task by introducing ExLNet which uses a novel DCISE blocks to reduce the computational burden. We show the effectiveness of the proposed architecture through various experiments performed on publicly available datasets. The proposed architecture shows consistent performance in binary as well as multi‐class classification tasks and outperforms other lightweight CNN architectures. Due to a significant reduction in the computational requirements, our method can be useful for resource‐constrained clinical environment as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxy完成签到,获得积分10
5秒前
郗妫完成签到,获得积分10
26秒前
xxxy关注了科研通微信公众号
28秒前
00完成签到 ,获得积分10
1分钟前
火星上的雨柏完成签到 ,获得积分10
2分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3655001Liu发布了新的文献求助30
3分钟前
4分钟前
清脆冥幽发布了新的文献求助10
4分钟前
小二郎应助任性凤凰采纳,获得10
4分钟前
HYQ完成签到 ,获得积分10
4分钟前
清脆冥幽完成签到,获得积分10
4分钟前
4分钟前
任性凤凰发布了新的文献求助10
4分钟前
KINGAZX完成签到 ,获得积分10
5分钟前
善学以致用应助平凡之路采纳,获得10
5分钟前
5分钟前
平凡之路发布了新的文献求助10
5分钟前
伊笙完成签到 ,获得积分0
5分钟前
丘比特应助任性凤凰采纳,获得30
5分钟前
6分钟前
任性凤凰发布了新的文献求助30
6分钟前
gincle完成签到 ,获得积分10
6分钟前
7分钟前
guojia发布了新的文献求助10
7分钟前
NexusExplorer应助任性沛槐采纳,获得10
7分钟前
7分钟前
任性沛槐发布了新的文献求助10
7分钟前
guojia完成签到,获得积分10
7分钟前
九月亦星完成签到 ,获得积分10
7分钟前
紫色天蓝完成签到,获得积分10
8分钟前
8分钟前
紫色天蓝发布了新的文献求助10
8分钟前
饼饼完成签到 ,获得积分10
9分钟前
arniu2008完成签到,获得积分20
9分钟前
arniu2008发布了新的文献求助10
9分钟前
10分钟前
老石完成签到 ,获得积分10
10分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5137746
求助须知:如何正确求助?哪些是违规求助? 4337405
关于积分的说明 13511521
捐赠科研通 4176135
什么是DOI,文献DOI怎么找? 2289874
邀请新用户注册赠送积分活动 1290391
关于科研通互助平台的介绍 1232225