清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An extremely lightweight CNN model for the diagnosis of chest radiographs in resource‐constrained environments

射线照相术 计算机科学 医学影像学 放射科 资源(消歧) 医学物理学 医学 核医学 人工智能 计算机网络
作者
Gautam Kumar,Nirbhay Sharma,Angshuman Paul
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7568-7578
标识
DOI:10.1002/mp.16722
摘要

Abstract Background In recent years, deep learning methods have been successfully used for chest x‐ray diagnosis. However, such deep learning models often contain millions of trainable parameters and have high computation demands. As a result, providing the benefits of cutting‐edge deep learning technology to areas with low computational resources would not be easy. Computationally lightweight deep learning models may potentially alleviate this problem. Purpose We aim to create a computationally lightweight model for the diagnosis of chest radiographs. Our model has only 0.14M parameters and 550 KB size. These make the proposed model potentially useful for deployment in resource‐constrained environments. Methods We fuse the concept of depthwise convolutions with squeeze and expand blocks to design the proposed architecture. The basic building block of our model is called D epthwise C onvolution I n S queeze and E xpand (DCISE) block. Using these DCISE blocks, we design an extremely lightweight convolutional neural network model (ExLNet), a computationally lightweight convolutional neural network (CNN) model for chest x‐ray diagnosis. Results We perform rigorous experiments on three publicly available datasets, namely, National Institutes of Health (NIH), VinBig ,and Chexpert for binary and multi‐class classification tasks. We train the proposed architecture on NIH dataset and evaluate the performance on VinBig and Chexpert datasets. The proposed method outperforms several state‐of‐the‐art approaches for both binary and multi‐class classification tasks despite having a significantly less number of parameters. Conclusions We design a lightweight CNN architecture for the chest x‐ray classification task by introducing ExLNet which uses a novel DCISE blocks to reduce the computational burden. We show the effectiveness of the proposed architecture through various experiments performed on publicly available datasets. The proposed architecture shows consistent performance in binary as well as multi‐class classification tasks and outperforms other lightweight CNN architectures. Due to a significant reduction in the computational requirements, our method can be useful for resource‐constrained clinical environment as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
方白秋完成签到,获得积分0
25秒前
以七完成签到 ,获得积分10
53秒前
以七关注了科研通微信公众号
58秒前
Rayyu_0905完成签到,获得积分10
1分钟前
kbcbwb2002完成签到,获得积分10
1分钟前
1分钟前
1分钟前
朴实的小萱完成签到 ,获得积分10
1分钟前
任性翠安完成签到 ,获得积分10
2分钟前
浮游应助Said1223采纳,获得10
2分钟前
无花果应助达西苏采纳,获得10
2分钟前
达西苏给达西苏的求助进行了留言
3分钟前
bellapp完成签到 ,获得积分10
3分钟前
GingerF应助科研通管家采纳,获得150
3分钟前
al完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
深情安青应助十点差一分采纳,获得10
4分钟前
十点差一分完成签到,获得积分10
4分钟前
月半完成签到,获得积分10
4分钟前
达西苏关注了科研通微信公众号
5分钟前
hugeyoung完成签到,获得积分10
6分钟前
6分钟前
达西苏发布了新的文献求助10
6分钟前
heisa完成签到,获得积分10
7分钟前
Otter完成签到,获得积分0
7分钟前
gmc完成签到 ,获得积分10
7分钟前
8分钟前
10分钟前
鲤鱼山人完成签到 ,获得积分10
10分钟前
博ge完成签到 ,获得积分10
11分钟前
yyds给张景赛的求助进行了留言
11分钟前
12分钟前
科研通AI2S应助guan采纳,获得10
12分钟前
学习使勇哥进步完成签到,获得积分10
13分钟前
小蘑菇应助yf采纳,获得10
13分钟前
鲁卓林完成签到,获得积分10
14分钟前
yyds完成签到,获得积分0
14分钟前
ricky完成签到,获得积分20
14分钟前
冷静新烟完成签到,获得积分10
14分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303142
求助须知:如何正确求助?哪些是违规求助? 4450073
关于积分的说明 13848990
捐赠科研通 4336590
什么是DOI,文献DOI怎么找? 2381008
邀请新用户注册赠送积分活动 1375962
关于科研通互助平台的介绍 1342508