An extremely lightweight CNN model for the diagnosis of chest radiographs in resource‐constrained environments

射线照相术 计算机科学 医学影像学 放射科 资源(消歧) 医学物理学 医学 核医学 人工智能 计算机网络
作者
Gautam Kumar,Nirbhay Sharma,Angshuman Paul
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7568-7578
标识
DOI:10.1002/mp.16722
摘要

Abstract Background In recent years, deep learning methods have been successfully used for chest x‐ray diagnosis. However, such deep learning models often contain millions of trainable parameters and have high computation demands. As a result, providing the benefits of cutting‐edge deep learning technology to areas with low computational resources would not be easy. Computationally lightweight deep learning models may potentially alleviate this problem. Purpose We aim to create a computationally lightweight model for the diagnosis of chest radiographs. Our model has only 0.14M parameters and 550 KB size. These make the proposed model potentially useful for deployment in resource‐constrained environments. Methods We fuse the concept of depthwise convolutions with squeeze and expand blocks to design the proposed architecture. The basic building block of our model is called D epthwise C onvolution I n S queeze and E xpand (DCISE) block. Using these DCISE blocks, we design an extremely lightweight convolutional neural network model (ExLNet), a computationally lightweight convolutional neural network (CNN) model for chest x‐ray diagnosis. Results We perform rigorous experiments on three publicly available datasets, namely, National Institutes of Health (NIH), VinBig ,and Chexpert for binary and multi‐class classification tasks. We train the proposed architecture on NIH dataset and evaluate the performance on VinBig and Chexpert datasets. The proposed method outperforms several state‐of‐the‐art approaches for both binary and multi‐class classification tasks despite having a significantly less number of parameters. Conclusions We design a lightweight CNN architecture for the chest x‐ray classification task by introducing ExLNet which uses a novel DCISE blocks to reduce the computational burden. We show the effectiveness of the proposed architecture through various experiments performed on publicly available datasets. The proposed architecture shows consistent performance in binary as well as multi‐class classification tasks and outperforms other lightweight CNN architectures. Due to a significant reduction in the computational requirements, our method can be useful for resource‐constrained clinical environment as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助机灵寒烟采纳,获得10
刚刚
无私幼蓉发布了新的文献求助10
1秒前
denise完成签到 ,获得积分10
2秒前
Ttt完成签到,获得积分20
2秒前
Jackylee完成签到,获得积分10
4秒前
breath完成签到,获得积分10
6秒前
JUN完成签到 ,获得积分10
6秒前
希望天下0贩的0应助exosome采纳,获得10
8秒前
科研牛人发布了新的文献求助10
8秒前
9秒前
木子关注了科研通微信公众号
10秒前
Jackylee发布了新的文献求助10
11秒前
11秒前
冷静芹菜完成签到 ,获得积分10
11秒前
傲娇曼凝完成签到,获得积分10
11秒前
抹茶冰淇淋完成签到 ,获得积分10
12秒前
13秒前
黄丽完成签到,获得积分10
13秒前
kkjay完成签到 ,获得积分10
13秒前
卢健辉完成签到,获得积分10
14秒前
高兴诗云完成签到,获得积分10
14秒前
lihaifeng发布了新的文献求助10
14秒前
Tobee发布了新的文献求助10
15秒前
青衣北风发布了新的文献求助10
17秒前
无奈曼云完成签到,获得积分10
17秒前
17秒前
芋你呀完成签到,获得积分10
17秒前
大炮台完成签到,获得积分10
18秒前
Jasper应助Singularity采纳,获得10
19秒前
慈父的微笑完成签到,获得积分10
19秒前
积极问晴发布了新的文献求助10
20秒前
987发布了新的文献求助10
20秒前
美好的大白完成签到,获得积分10
21秒前
22秒前
JamesPei应助潇潇采纳,获得10
25秒前
25秒前
GUGU应助987采纳,获得10
27秒前
万能图书馆应助Milio采纳,获得10
27秒前
28秒前
糊涂的皮卡丘完成签到 ,获得积分10
28秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464083
求助须知:如何正确求助?哪些是违规求助? 3057296
关于积分的说明 9056888
捐赠科研通 2747427
什么是DOI,文献DOI怎么找? 1507362
科研通“疑难数据库(出版商)”最低求助积分说明 696507
邀请新用户注册赠送积分活动 696029