重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

An extremely lightweight CNN model for the diagnosis of chest radiographs in resource‐constrained environments

射线照相术 计算机科学 医学影像学 放射科 资源(消歧) 医学物理学 医学 核医学 人工智能 计算机网络
作者
Gautam Kumar,Nirbhay Sharma,Angshuman Paul
出处
期刊:Medical Physics [Wiley]
卷期号:50 (12): 7568-7578
标识
DOI:10.1002/mp.16722
摘要

Abstract Background In recent years, deep learning methods have been successfully used for chest x‐ray diagnosis. However, such deep learning models often contain millions of trainable parameters and have high computation demands. As a result, providing the benefits of cutting‐edge deep learning technology to areas with low computational resources would not be easy. Computationally lightweight deep learning models may potentially alleviate this problem. Purpose We aim to create a computationally lightweight model for the diagnosis of chest radiographs. Our model has only 0.14M parameters and 550 KB size. These make the proposed model potentially useful for deployment in resource‐constrained environments. Methods We fuse the concept of depthwise convolutions with squeeze and expand blocks to design the proposed architecture. The basic building block of our model is called D epthwise C onvolution I n S queeze and E xpand (DCISE) block. Using these DCISE blocks, we design an extremely lightweight convolutional neural network model (ExLNet), a computationally lightweight convolutional neural network (CNN) model for chest x‐ray diagnosis. Results We perform rigorous experiments on three publicly available datasets, namely, National Institutes of Health (NIH), VinBig ,and Chexpert for binary and multi‐class classification tasks. We train the proposed architecture on NIH dataset and evaluate the performance on VinBig and Chexpert datasets. The proposed method outperforms several state‐of‐the‐art approaches for both binary and multi‐class classification tasks despite having a significantly less number of parameters. Conclusions We design a lightweight CNN architecture for the chest x‐ray classification task by introducing ExLNet which uses a novel DCISE blocks to reduce the computational burden. We show the effectiveness of the proposed architecture through various experiments performed on publicly available datasets. The proposed architecture shows consistent performance in binary as well as multi‐class classification tasks and outperforms other lightweight CNN architectures. Due to a significant reduction in the computational requirements, our method can be useful for resource‐constrained clinical environment as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助A宇采纳,获得10
1秒前
搜集达人应助野原新知珉采纳,获得10
1秒前
1秒前
领导范儿应助导师求放过采纳,获得30
1秒前
姜且发布了新的文献求助10
2秒前
CodeCraft应助LSY采纳,获得10
3秒前
紫色翡翠完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
liu发布了新的文献求助10
7秒前
姜jiang发布了新的文献求助10
9秒前
哦哦发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
11秒前
浮游应助顺其自然_666888采纳,获得10
11秒前
皮肤科王东明完成签到,获得积分10
11秒前
11秒前
12秒前
我是老大应助Huguizhou采纳,获得10
14秒前
14秒前
汉堡包应助dsa采纳,获得10
15秒前
蒸馒头争气完成签到,获得积分10
16秒前
16秒前
牧星发布了新的文献求助10
17秒前
哦哦完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
19秒前
小小莫发布了新的文献求助10
19秒前
浮游应助姜jiang采纳,获得10
19秒前
19秒前
虚心的大树完成签到 ,获得积分10
19秒前
123完成签到,获得积分10
21秒前
能干智宸发布了新的文献求助10
21秒前
爆米花应助huma采纳,获得10
22秒前
满意的甜瓜完成签到 ,获得积分10
23秒前
勤劳的小何完成签到 ,获得积分20
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707