Ultra-high tensile strength induced by multiple precipitates in extruded ZK60 alloy via co-alloying Ca and Er

材料科学 极限抗拉强度 合金 挤压 沉淀硬化 材料的强化机理 晶界 降水 冶金 动态再结晶 再结晶(地质) 微观结构 热加工 古生物学 物理 生物 气象学
作者
X.R. Zhang,Jianru Zuo,D.D. Zhang,Dangqi Fang,Xiangdong Ding,Jun Sun
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:971: 172680-172680 被引量:6
标识
DOI:10.1016/j.jallcom.2023.172680
摘要

Obtaining ultra-high strength in commercial ZK60 wrought alloys is rather difficult by conventional processes due to their limited precipitation hardening. In this work, we proposed a novel strategy to enhance the strength of ZK60 alloy by constructing a high density of multi-scale particles in the matrix. As expected, the ultra-high tensile strength, such as ultimate tensile strength of 436 MPa and yield strength of 400 MPa, is achieved in the co-addition of minor Ca and Er in ZK60 extrusion alloys, outperforming most of Mg-Zn-based alloys reported previously. The co-addition of Ca and Er induces more multi-scale particles, including submicron-broken particles and fine dynamic precipitates formed in the matrix during extrusion. Note that fine precipitates at sub-grain boundaries stabilize their misorientations due to the pinning role and thus retard the dynamic recrystallization process, which intensifies the deformation texture of the bimodal structures. Solute segregation of Ca and Zn to grain boundaries was also observed, which favors refining recrystallized grains by solute drag effect. Compared to ZK60 alloy, the enhanced tensile strength in co-modified ZK60 alloy with Ca and Er is mainly attributed to the Orowan strengthening of multiscale particles. These results are expected to provide an important reference for fabricating high-strength Mg-Zn-based alloys.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈完成签到,获得积分10
1秒前
刘显波完成签到,获得积分10
4秒前
kaka091完成签到,获得积分10
4秒前
5秒前
路宝发布了新的文献求助10
5秒前
禾+完成签到,获得积分10
5秒前
6秒前
申申完成签到,获得积分10
6秒前
7秒前
qian完成签到,获得积分20
7秒前
锦鲤完成签到 ,获得积分10
8秒前
8秒前
8秒前
8秒前
禾+发布了新的文献求助10
9秒前
小白完成签到,获得积分20
10秒前
刘JX完成签到,获得积分10
10秒前
geold发布了新的文献求助10
12秒前
传奇3应助Mm采纳,获得10
12秒前
bkagyin应助帕尼尼采纳,获得10
13秒前
研友_VZG7GZ应助圣斗士采纳,获得10
13秒前
D1fficulty完成签到,获得积分0
13秒前
欢欢完成签到,获得积分10
13秒前
13秒前
DDDD发布了新的文献求助10
13秒前
申申发布了新的文献求助10
14秒前
zzz完成签到,获得积分10
14秒前
Cassie发布了新的文献求助30
15秒前
15秒前
QY发布了新的文献求助20
15秒前
务实老虎完成签到,获得积分10
16秒前
Orange应助刘JX采纳,获得10
18秒前
18秒前
小白菜完成签到,获得积分10
18秒前
时玖发布了新的文献求助10
20秒前
surui完成签到 ,获得积分10
20秒前
22秒前
jjzzSherri完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
23秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618526
求助须知:如何正确求助?哪些是违规求助? 4703500
关于积分的说明 14922583
捐赠科研通 4757805
什么是DOI,文献DOI怎么找? 2550140
邀请新用户注册赠送积分活动 1512973
关于科研通互助平台的介绍 1474342