Ultra-high tensile strength induced by multiple precipitates in extruded ZK60 alloy via co-alloying Ca and Er

材料科学 极限抗拉强度 合金 挤压 沉淀硬化 材料的强化机理 晶界 降水 冶金 动态再结晶 再结晶(地质) 微观结构 热加工 古生物学 物理 生物 气象学
作者
X.R. Zhang,Jianru Zuo,D.D. Zhang,Dangqi Fang,Xiangdong Ding,Jun Sun
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:971: 172680-172680 被引量:6
标识
DOI:10.1016/j.jallcom.2023.172680
摘要

Obtaining ultra-high strength in commercial ZK60 wrought alloys is rather difficult by conventional processes due to their limited precipitation hardening. In this work, we proposed a novel strategy to enhance the strength of ZK60 alloy by constructing a high density of multi-scale particles in the matrix. As expected, the ultra-high tensile strength, such as ultimate tensile strength of 436 MPa and yield strength of 400 MPa, is achieved in the co-addition of minor Ca and Er in ZK60 extrusion alloys, outperforming most of Mg-Zn-based alloys reported previously. The co-addition of Ca and Er induces more multi-scale particles, including submicron-broken particles and fine dynamic precipitates formed in the matrix during extrusion. Note that fine precipitates at sub-grain boundaries stabilize their misorientations due to the pinning role and thus retard the dynamic recrystallization process, which intensifies the deformation texture of the bimodal structures. Solute segregation of Ca and Zn to grain boundaries was also observed, which favors refining recrystallized grains by solute drag effect. Compared to ZK60 alloy, the enhanced tensile strength in co-modified ZK60 alloy with Ca and Er is mainly attributed to the Orowan strengthening of multiscale particles. These results are expected to provide an important reference for fabricating high-strength Mg-Zn-based alloys.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
Rubyii发布了新的文献求助10
刚刚
zzzzzzz完成签到 ,获得积分10
1秒前
1秒前
1秒前
PORCO完成签到,获得积分10
2秒前
浮游应助Zac采纳,获得10
3秒前
4秒前
英姑应助西子采纳,获得10
5秒前
5秒前
yaoyao发布了新的文献求助10
6秒前
6秒前
yijibaoli完成签到 ,获得积分10
7秒前
7秒前
及禾发布了新的文献求助10
7秒前
研友_n2Qv2L发布了新的文献求助10
7秒前
8秒前
7788完成签到,获得积分10
9秒前
FyD关闭了FyD文献求助
10秒前
10秒前
wch发布了新的文献求助10
10秒前
11秒前
瞿绝悟发布了新的文献求助10
11秒前
沉静飞雪完成签到,获得积分10
11秒前
11秒前
聂珩发布了新的文献求助10
11秒前
11秒前
寒冷的书白完成签到,获得积分20
12秒前
橙子发布了新的文献求助10
13秒前
Lucas应助李里哩采纳,获得10
13秒前
腼腆的初蓝完成签到,获得积分10
14秒前
15秒前
wz关注了科研通微信公众号
15秒前
狐妖完成签到,获得积分10
16秒前
wwwwww发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
辛勤秋双发布了新的文献求助20
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694859
求助须知:如何正确求助?哪些是违规求助? 5099094
关于积分的说明 15214731
捐赠科研通 4851410
什么是DOI,文献DOI怎么找? 2602316
邀请新用户注册赠送积分活动 1554181
关于科研通互助平台的介绍 1512082