Ultra-high tensile strength induced by multiple precipitates in extruded ZK60 alloy via co-alloying Ca and Er

材料科学 极限抗拉强度 合金 挤压 沉淀硬化 材料的强化机理 晶界 降水 冶金 动态再结晶 再结晶(地质) 微观结构 热加工 古生物学 物理 生物 气象学
作者
X.R. Zhang,Jianru Zuo,D.D. Zhang,Dangqi Fang,Xiangdong Ding,Jun Sun
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:971: 172680-172680 被引量:6
标识
DOI:10.1016/j.jallcom.2023.172680
摘要

Obtaining ultra-high strength in commercial ZK60 wrought alloys is rather difficult by conventional processes due to their limited precipitation hardening. In this work, we proposed a novel strategy to enhance the strength of ZK60 alloy by constructing a high density of multi-scale particles in the matrix. As expected, the ultra-high tensile strength, such as ultimate tensile strength of 436 MPa and yield strength of 400 MPa, is achieved in the co-addition of minor Ca and Er in ZK60 extrusion alloys, outperforming most of Mg-Zn-based alloys reported previously. The co-addition of Ca and Er induces more multi-scale particles, including submicron-broken particles and fine dynamic precipitates formed in the matrix during extrusion. Note that fine precipitates at sub-grain boundaries stabilize their misorientations due to the pinning role and thus retard the dynamic recrystallization process, which intensifies the deformation texture of the bimodal structures. Solute segregation of Ca and Zn to grain boundaries was also observed, which favors refining recrystallized grains by solute drag effect. Compared to ZK60 alloy, the enhanced tensile strength in co-modified ZK60 alloy with Ca and Er is mainly attributed to the Orowan strengthening of multiscale particles. These results are expected to provide an important reference for fabricating high-strength Mg-Zn-based alloys.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzoey关注了科研通微信公众号
刚刚
qxqy6678发布了新的文献求助10
刚刚
刚刚
Owen应助Cgy采纳,获得10
刚刚
刚刚
悦耳怜珊发布了新的文献求助10
1秒前
香蕉静芙发布了新的文献求助10
1秒前
李喜喜发布了新的文献求助10
1秒前
1秒前
zhonglv7应助制药小兵采纳,获得10
2秒前
wanci应助典雅的绿凝采纳,获得10
2秒前
金鱼发布了新的文献求助20
2秒前
2秒前
CC发布了新的文献求助10
2秒前
2秒前
zjx完成签到,获得积分10
2秒前
CipherSage应助灵巧幻嫣采纳,获得10
2秒前
共享精神应助黄伟凯采纳,获得10
2秒前
2秒前
3秒前
3秒前
4秒前
小熊维C完成签到,获得积分10
4秒前
YC完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
俊逸天德发布了新的文献求助10
5秒前
5秒前
5秒前
daggeraxe完成签到 ,获得积分10
5秒前
希望天下0贩的0应助HJJHJH采纳,获得10
6秒前
lxy完成签到,获得积分10
6秒前
huang_xiaohuo完成签到,获得积分10
6秒前
6秒前
6秒前
英姑应助DG采纳,获得10
6秒前
所所应助欧的佩帕采纳,获得10
6秒前
会科研的胡萝卜完成签到,获得积分10
6秒前
花花发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711035
求助须知:如何正确求助?哪些是违规求助? 5202070
关于积分的说明 15263091
捐赠科研通 4863454
什么是DOI,文献DOI怎么找? 2610771
邀请新用户注册赠送积分活动 1561017
关于科研通互助平台的介绍 1518534