Ultra-high tensile strength induced by multiple precipitates in extruded ZK60 alloy via co-alloying Ca and Er

材料科学 极限抗拉强度 合金 挤压 沉淀硬化 材料的强化机理 晶界 降水 冶金 动态再结晶 再结晶(地质) 微观结构 热加工 古生物学 物理 生物 气象学
作者
X.R. Zhang,Jianru Zuo,D.D. Zhang,Dangqi Fang,Xiangdong Ding,Jun Sun
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:971: 172680-172680 被引量:6
标识
DOI:10.1016/j.jallcom.2023.172680
摘要

Obtaining ultra-high strength in commercial ZK60 wrought alloys is rather difficult by conventional processes due to their limited precipitation hardening. In this work, we proposed a novel strategy to enhance the strength of ZK60 alloy by constructing a high density of multi-scale particles in the matrix. As expected, the ultra-high tensile strength, such as ultimate tensile strength of 436 MPa and yield strength of 400 MPa, is achieved in the co-addition of minor Ca and Er in ZK60 extrusion alloys, outperforming most of Mg-Zn-based alloys reported previously. The co-addition of Ca and Er induces more multi-scale particles, including submicron-broken particles and fine dynamic precipitates formed in the matrix during extrusion. Note that fine precipitates at sub-grain boundaries stabilize their misorientations due to the pinning role and thus retard the dynamic recrystallization process, which intensifies the deformation texture of the bimodal structures. Solute segregation of Ca and Zn to grain boundaries was also observed, which favors refining recrystallized grains by solute drag effect. Compared to ZK60 alloy, the enhanced tensile strength in co-modified ZK60 alloy with Ca and Er is mainly attributed to the Orowan strengthening of multiscale particles. These results are expected to provide an important reference for fabricating high-strength Mg-Zn-based alloys.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yes完成签到,获得积分10
刚刚
刚刚
天天快乐应助版权版权采纳,获得10
刚刚
Frozen Flame发布了新的文献求助10
刚刚
科研通AI6应助www采纳,获得10
刚刚
科目三应助怕孤单的易形采纳,获得10
1秒前
zhu发布了新的文献求助10
1秒前
小二郎应助嗷嗷采纳,获得10
1秒前
后来发布了新的文献求助10
1秒前
言言言言发布了新的文献求助10
1秒前
Alwayswill发布了新的文献求助10
2秒前
zhousiyu发布了新的文献求助10
2秒前
彭于晏应助降娄采纳,获得10
2秒前
2秒前
2秒前
3秒前
木木发布了新的文献求助10
3秒前
3秒前
jzy发布了新的文献求助10
3秒前
细心新之发布了新的文献求助10
3秒前
4秒前
高贵的若烟关注了科研通微信公众号
4秒前
4秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
CodeCraft应助小叶子采纳,获得10
7秒前
zhu完成签到,获得积分10
7秒前
haha9haha完成签到,获得积分10
7秒前
嘿嘿发布了新的文献求助10
7秒前
8秒前
刘子田发布了新的文献求助10
8秒前
kong溪1002发布了新的文献求助10
8秒前
8秒前
8秒前
Feiyan完成签到,获得积分10
8秒前
锤锤发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5647671
求助须知:如何正确求助?哪些是违规求助? 4774049
关于积分的说明 15040794
捐赠科研通 4806561
什么是DOI,文献DOI怎么找? 2570314
邀请新用户注册赠送积分活动 1527131
关于科研通互助平台的介绍 1486211