Ultra-high tensile strength induced by multiple precipitates in extruded ZK60 alloy via co-alloying Ca and Er

材料科学 极限抗拉强度 合金 挤压 沉淀硬化 材料的强化机理 晶界 降水 冶金 动态再结晶 再结晶(地质) 微观结构 热加工 古生物学 物理 生物 气象学
作者
X.R. Zhang,Jianru Zuo,D.D. Zhang,Dangqi Fang,Xiangdong Ding,Jun Sun
出处
期刊:Journal of Alloys and Compounds [Elsevier]
卷期号:971: 172680-172680 被引量:6
标识
DOI:10.1016/j.jallcom.2023.172680
摘要

Obtaining ultra-high strength in commercial ZK60 wrought alloys is rather difficult by conventional processes due to their limited precipitation hardening. In this work, we proposed a novel strategy to enhance the strength of ZK60 alloy by constructing a high density of multi-scale particles in the matrix. As expected, the ultra-high tensile strength, such as ultimate tensile strength of 436 MPa and yield strength of 400 MPa, is achieved in the co-addition of minor Ca and Er in ZK60 extrusion alloys, outperforming most of Mg-Zn-based alloys reported previously. The co-addition of Ca and Er induces more multi-scale particles, including submicron-broken particles and fine dynamic precipitates formed in the matrix during extrusion. Note that fine precipitates at sub-grain boundaries stabilize their misorientations due to the pinning role and thus retard the dynamic recrystallization process, which intensifies the deformation texture of the bimodal structures. Solute segregation of Ca and Zn to grain boundaries was also observed, which favors refining recrystallized grains by solute drag effect. Compared to ZK60 alloy, the enhanced tensile strength in co-modified ZK60 alloy with Ca and Er is mainly attributed to the Orowan strengthening of multiscale particles. These results are expected to provide an important reference for fabricating high-strength Mg-Zn-based alloys.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助伞下铭采纳,获得10
刚刚
科研通AI6应助伞下铭采纳,获得10
刚刚
CipherSage应助干净的友卉采纳,获得10
刚刚
dada完成签到 ,获得积分10
1秒前
1秒前
科研小卡拉米完成签到,获得积分10
2秒前
SciGPT应助CHINA_C13采纳,获得10
2秒前
orixero应助CHINA_C13采纳,获得10
2秒前
CodeCraft应助CHINA_C13采纳,获得150
2秒前
科研通AI6应助CHINA_C13采纳,获得150
2秒前
科研通AI6应助CHINA_C13采纳,获得10
2秒前
科研通AI6应助CHINA_C13采纳,获得150
2秒前
小羊先生完成签到 ,获得积分10
2秒前
云游归尘发布了新的文献求助10
3秒前
小童发布了新的文献求助10
3秒前
饱满以松完成签到 ,获得积分10
3秒前
3秒前
4秒前
平平发布了新的文献求助10
4秒前
凶狠的储发布了新的文献求助10
4秒前
冰菱完成签到,获得积分10
4秒前
Owen应助碎碎采纳,获得10
4秒前
warithy发布了新的文献求助10
5秒前
Ethanyoyo0917完成签到,获得积分10
5秒前
Ava应助优雅的老姆采纳,获得10
5秒前
liekkas发布了新的文献求助10
5秒前
6秒前
小赵发布了新的文献求助30
7秒前
背包包包应助知性的雅彤采纳,获得10
7秒前
8秒前
DHY发布了新的文献求助10
8秒前
疯狂的问枫完成签到,获得积分20
9秒前
李健应助warithy采纳,获得10
9秒前
9秒前
10秒前
睿洁洁发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
元气马完成签到 ,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667047
求助须知:如何正确求助?哪些是违规求助? 4883873
关于积分的说明 15118527
捐赠科研通 4825937
什么是DOI,文献DOI怎么找? 2583643
邀请新用户注册赠送积分活动 1537807
关于科研通互助平台的介绍 1496002