Multiple indicators of gut dysbiosis predict all-cause and cause-specific mortality in solid organ transplant recipients

失调 人口 比例危险模型 肠道菌群 死亡率 死因 队列 医学 疾病 微生物群 生物 内科学 免疫学 生物信息学 环境卫生
作者
J. Casper Swarte,Shuyan Zhang,Lianne M. Nieuwenhuis,Ranko Gaćeša,Tim J. Knobbe,Vincent E. de Meijer,Kevin Damman,Erik A.M. Verschuuren,C. Tji Gan,Jingyuan Fu,Alexandra Zhernakova,Hermie J.M. Harmsen,Hans Blokzijl,Stephan J. L. Bakker,Johannes R. Björk,Rinse K. Weersma
出处
期刊:Cold Spring Harbor Laboratory - medRxiv
标识
DOI:10.1101/2023.10.28.23297709
摘要

Abstract Objective Gut microbiome composition is associated with multiple diseases, but relatively little is known about its relationship with long-term outcome measures. While gut dysbiosis has been linked to mortality risk in the general population, the relation with overall survival in specific diseases has not been extensively studied. In the current study, we present in-depth analyses regarding the relationship between gut dysbiosis and all-cause and cause-specific mortality in the setting of solid organ transplant recipients (SOTR). Design We analyzed 1,337 metagenomes derived from fecal samples of 766 kidney, 334 liver, 170 lung and 67 heart transplant recipients from the TransplantLines Biobank and Cohort; a prospective cohort study including extensive phenotype data with 6.5 years of follow up. To quantify gut dysbiosis, we included additional 8,208 metagenomic samples from a general population from the same geographical location. Multivariable Cox regression and a machine learning algorithm were used to analyze the association of indicators of gut dysbiosis and species abundances, with all-cause and cause-specific mortality. Results We identified two patterns representing overall microbiome community variation that were associated with both all-cause and cause specific mortality. Gut microbial distance to the average of the general population was associated with all-cause mortality and infection-, malignancy- and cardiovascular disease related mortality. Using multivariable Cox regression, we identified 23 species that were associated with all-cause mortality. By using a machine learning algorithm, we identified a log-ratio of 19 species predictive of all-cause mortality, all of which were also independently associated in the multivariable Cox-regression analysis. Conclusion Gut dysbiosis is consistently associated with mortality in SOTR. Our results support the observations that gut dysbiosis is predictive of long-term survival. Since our data do not provide causative evidence, further research needs to be done to see determine whether gut-microbiome targeting therapies might improve long term outcomes Summary box Significance of this study What is already known on this subject? Current literature suggests that the gut microbiome signature might be associated with mortality risk in the general population. Higher diversity of gut microbiota is associated with lower mortality in allogeneic hematopoietic-cell transplantation recipients. Liver and kidney transplant recipients suffer from gut dysbiosis and an analysis with a relatively low number of events showed that dysbiosis is associated with mortality. What are the new findings? Across kidney, liver, heart and lung transplant recipients, we identified two overall microbial community variation patterns that are associated with all-cause mortality independent of the organ transplant and specifically to death from malignancy and infection. We find that multiple indicators of gut dysbiosis predict all-cause mortality and death by cardiovascular diseases, malignancy and infection. We find multiple microbial species associated with all-cause and cause-specific mortality. Using three different methods, we identify multiple bacterial species (shared between different analytical approaches) that are associated with an increased or decreased risk of mortality following solid organ transplantation. Using a machine learning algorithm, we identify a log-ratio of 19 bacterial species that was associated with all-cause mortality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wb发布了新的文献求助10
3秒前
七子完成签到 ,获得积分10
6秒前
伴奏小胖完成签到 ,获得积分10
6秒前
8秒前
辛酸长安远啊完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
qianci2009完成签到,获得积分0
14秒前
小曲同学完成签到,获得积分10
17秒前
19秒前
20秒前
小井盖完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
24秒前
Neo完成签到,获得积分10
25秒前
ZZZZZ发布了新的文献求助200
26秒前
haochi发布了新的文献求助10
27秒前
登登完成签到,获得积分10
28秒前
雪酪芋泥球完成签到 ,获得积分10
29秒前
勤恳的雪卉完成签到,获得积分10
30秒前
小遇完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
32秒前
Terahertz完成签到 ,获得积分10
35秒前
36秒前
37秒前
jue完成签到 ,获得积分10
37秒前
我想静静完成签到 ,获得积分10
38秒前
NexusExplorer应助siv采纳,获得10
40秒前
save完成签到,获得积分10
41秒前
43秒前
文静灵阳完成签到 ,获得积分10
44秒前
明哲派完成签到,获得积分10
46秒前
枫威完成签到 ,获得积分10
46秒前
曾志伟完成签到,获得积分10
47秒前
纸质超人发布了新的文献求助10
48秒前
演化的蛙鱼完成签到,获得积分10
49秒前
鲲鹏完成签到 ,获得积分10
50秒前
量子星尘发布了新的文献求助10
51秒前
sunwsmile完成签到 ,获得积分10
52秒前
Kamalika完成签到,获得积分10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4597391
求助须知:如何正确求助?哪些是违规求助? 4008984
关于积分的说明 12409764
捐赠科研通 3688206
什么是DOI,文献DOI怎么找? 2033003
邀请新用户注册赠送积分活动 1066265
科研通“疑难数据库(出版商)”最低求助积分说明 951520