Development and validation of a predictive model of the hospital cost associated with bariatric surgery

医学 平均绝对百分比误差 随机森林 收入 平均绝对误差 集合(抽象数据类型) 运营管理 外科 统计 均方误差 计算机科学 机器学习 数学 工程类 财务 经济 程序设计语言
作者
Vincent Ochs,Anja Tobler,Bassey Enodien,Baraa Saad,Stephanie Taha‐Mehlitz,Julia Wolleb,Joelle El Awar,Katerina Neumann,Susanne Drews,Ilan Rosenblum,Reinhard Stoll,Robert Rosenberg,Daniel M. Frey,Philippe C. Cattin,Anas Taha
出处
期刊:Obesity Research & Clinical Practice [Elsevier]
卷期号:17 (6): 529-535 被引量:2
标识
DOI:10.1016/j.orcp.2023.10.003
摘要

Hospitals are facing difficulties in predicting, evaluating, and managing cost-affecting parameters in patient treatments. Inaccurate cost prediction leads to a deficit in operational revenue. This study aims to determine the ability of Machine Learning (ML) algorithms to predict the cost of care in bariatric and metabolic surgery and develop a predictive tool for improved cost analysis. 602 patients who underwent bariatric and metabolic surgery at Wetzikon hospital from 2013 to 2019 were included in the study. Multiple variables including patient factors, surgical factors, and post-operative complications were tested using a number of predictive modeling strategies. The study was registered under Req 2022–00659 and approved by an institutional review board. The cost was defined as the sum of all costs incurred during the hospital stay, expressed in CHF (Swiss Francs). The data was preprocessed and split into a training set (80%) and a test set (20%) to build and validate models. The final model was selected based on the mean absolute percentage error (MAPE). The Random Forest model was found to be the most accurate in predicting the overall cost of bariatric surgery with a mean absolute percentage error of 12.7. The study provides evidence that the Random Forest model could be used by hospitals to help with financial calculations and cost-efficient operation. However, further research is needed to improve its accuracy. This study serves as a proof of principle for an efficient ML-based prediction tool to be tested on multi-center data in future phases of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后的丹亦完成签到,获得积分10
1秒前
1秒前
remake441发布了新的文献求助10
1秒前
鳗鱼饭发布了新的文献求助10
1秒前
青春完成签到 ,获得积分10
2秒前
2秒前
2秒前
所所应助sunmcxz采纳,获得10
3秒前
fighting完成签到,获得积分10
3秒前
简单又夏完成签到,获得积分10
3秒前
LeeHx完成签到,获得积分10
4秒前
Oct_Y完成签到,获得积分10
4秒前
5秒前
5秒前
zgt01发布了新的文献求助10
5秒前
烟花应助duou采纳,获得10
5秒前
ARomeo完成签到,获得积分10
6秒前
景妙海完成签到 ,获得积分10
6秒前
obito发布了新的文献求助10
6秒前
6秒前
6秒前
8秒前
青春发布了新的文献求助50
8秒前
Candy完成签到,获得积分10
8秒前
9秒前
俗丨驳回了wlscj应助
9秒前
9秒前
9秒前
无奈敏发布了新的文献求助10
10秒前
从全世界路过完成签到 ,获得积分10
11秒前
舒适傲白发布了新的文献求助10
12秒前
icey发布了新的文献求助10
12秒前
WStarry完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
嘉子发布了新的文献求助10
15秒前
15秒前
慕青应助安详的小凝采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424419
求助须知:如何正确求助?哪些是违规求助? 4538767
关于积分的说明 14163869
捐赠科研通 4455739
什么是DOI,文献DOI怎么找? 2443880
邀请新用户注册赠送积分活动 1435011
关于科研通互助平台的介绍 1412337