Development and validation of a predictive model of the hospital cost associated with bariatric surgery

医学 平均绝对百分比误差 随机森林 收入 平均绝对误差 集合(抽象数据类型) 运营管理 外科 统计 均方误差 计算机科学 机器学习 数学 工程类 财务 经济 程序设计语言
作者
Vincent Ochs,Anja Tobler,Bassey Enodien,Baraa Saad,Stephanie Taha‐Mehlitz,Julia Wolleb,Joelle El Awar,Katerina Neumann,Susanne Drews,Ilan Rosenblum,Reinhard Stoll,Robert Rosenberg,Daniel M. Frey,Philippe C. Cattin,Anas Taha
出处
期刊:Obesity Research & Clinical Practice [Elsevier BV]
卷期号:17 (6): 529-535 被引量:1
标识
DOI:10.1016/j.orcp.2023.10.003
摘要

Hospitals are facing difficulties in predicting, evaluating, and managing cost-affecting parameters in patient treatments. Inaccurate cost prediction leads to a deficit in operational revenue. This study aims to determine the ability of Machine Learning (ML) algorithms to predict the cost of care in bariatric and metabolic surgery and develop a predictive tool for improved cost analysis. 602 patients who underwent bariatric and metabolic surgery at Wetzikon hospital from 2013 to 2019 were included in the study. Multiple variables including patient factors, surgical factors, and post-operative complications were tested using a number of predictive modeling strategies. The study was registered under Req 2022–00659 and approved by an institutional review board. The cost was defined as the sum of all costs incurred during the hospital stay, expressed in CHF (Swiss Francs). The data was preprocessed and split into a training set (80%) and a test set (20%) to build and validate models. The final model was selected based on the mean absolute percentage error (MAPE). The Random Forest model was found to be the most accurate in predicting the overall cost of bariatric surgery with a mean absolute percentage error of 12.7. The study provides evidence that the Random Forest model could be used by hospitals to help with financial calculations and cost-efficient operation. However, further research is needed to improve its accuracy. This study serves as a proof of principle for an efficient ML-based prediction tool to be tested on multi-center data in future phases of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小牛完成签到,获得积分10
刚刚
热可可728完成签到,获得积分10
刚刚
蹦蹦月亮完成签到,获得积分10
刚刚
liangxu0313完成签到,获得积分10
1秒前
1秒前
李雨完成签到,获得积分10
1秒前
果实发布了新的文献求助10
1秒前
賢様666完成签到,获得积分10
2秒前
冷傲天川完成签到,获得积分10
2秒前
等你完成签到,获得积分10
2秒前
正直的念梦完成签到,获得积分10
3秒前
lisiying完成签到,获得积分20
3秒前
MG完成签到,获得积分10
3秒前
aaaaa完成签到,获得积分10
4秒前
坚强的纸飞机完成签到,获得积分10
4秒前
辛勤饼干发布了新的文献求助10
4秒前
5秒前
5秒前
飘逸宛丝完成签到,获得积分10
5秒前
5秒前
6秒前
微风打了烊完成签到 ,获得积分10
6秒前
科研小白完成签到,获得积分10
7秒前
机智雁凡完成签到,获得积分10
7秒前
7秒前
怡然云朵发布了新的文献求助10
8秒前
8秒前
LaTeXer应助棋士采纳,获得50
8秒前
xingwen发布了新的文献求助10
10秒前
小玲玲完成签到,获得积分10
11秒前
12秒前
哈基米发布了新的文献求助10
12秒前
13秒前
Akim应助鹅毛大雪采纳,获得10
13秒前
伶俐如冰完成签到,获得积分10
13秒前
图图完成签到,获得积分10
13秒前
mudiboyang发布了新的文献求助10
14秒前
喵喵喵发布了新的文献求助10
15秒前
晴朗完成签到,获得积分10
15秒前
Hellowa完成签到,获得积分10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960404
求助须知:如何正确求助?哪些是违规求助? 3506557
关于积分的说明 11131183
捐赠科研通 3238768
什么是DOI,文献DOI怎么找? 1789884
邀请新用户注册赠送积分活动 871986
科研通“疑难数据库(出版商)”最低求助积分说明 803118