Development and validation of a predictive model of the hospital cost associated with bariatric surgery

医学 平均绝对百分比误差 随机森林 收入 平均绝对误差 集合(抽象数据类型) 运营管理 外科 统计 均方误差 计算机科学 机器学习 数学 工程类 财务 经济 程序设计语言
作者
Vincent Ochs,Anja Tobler,Bassey Enodien,Baraa Saad,Stephanie Taha‐Mehlitz,Julia Wolleb,Joelle El Awar,Katerina Neumann,Susanne Drews,Ilan Rosenblum,Reinhard Stoll,Robert Rosenberg,Daniel M. Frey,Philippe C. Cattin,Anas Taha
出处
期刊:Obesity Research & Clinical Practice [Elsevier BV]
卷期号:17 (6): 529-535 被引量:2
标识
DOI:10.1016/j.orcp.2023.10.003
摘要

Hospitals are facing difficulties in predicting, evaluating, and managing cost-affecting parameters in patient treatments. Inaccurate cost prediction leads to a deficit in operational revenue. This study aims to determine the ability of Machine Learning (ML) algorithms to predict the cost of care in bariatric and metabolic surgery and develop a predictive tool for improved cost analysis. 602 patients who underwent bariatric and metabolic surgery at Wetzikon hospital from 2013 to 2019 were included in the study. Multiple variables including patient factors, surgical factors, and post-operative complications were tested using a number of predictive modeling strategies. The study was registered under Req 2022–00659 and approved by an institutional review board. The cost was defined as the sum of all costs incurred during the hospital stay, expressed in CHF (Swiss Francs). The data was preprocessed and split into a training set (80%) and a test set (20%) to build and validate models. The final model was selected based on the mean absolute percentage error (MAPE). The Random Forest model was found to be the most accurate in predicting the overall cost of bariatric surgery with a mean absolute percentage error of 12.7. The study provides evidence that the Random Forest model could be used by hospitals to help with financial calculations and cost-efficient operation. However, further research is needed to improve its accuracy. This study serves as a proof of principle for an efficient ML-based prediction tool to be tested on multi-center data in future phases of the study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9420完成签到,获得积分10
刚刚
隐形曼青应助hunajx采纳,获得10
刚刚
sasasas发布了新的文献求助10
1秒前
HN洪完成签到,获得积分10
1秒前
莫言发布了新的文献求助10
1秒前
shuoshuo发布了新的文献求助10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
彭于晏应助科研通管家采纳,获得10
1秒前
无曲应助科研通管家采纳,获得20
2秒前
2秒前
酷酷问梅完成签到,获得积分10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
野狗拉丽发布了新的文献求助10
2秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
Koalas应助科研通管家采纳,获得20
2秒前
浮游应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
Lilith应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
反杀闰土的猹完成签到 ,获得积分10
4秒前
5秒前
6秒前
酷波er应助qinkoko采纳,获得10
6秒前
ybigwhite应助猛犸象冲冲冲采纳,获得20
7秒前
完美世界应助坚持坚持采纳,获得10
7秒前
热心冷亦完成签到,获得积分10
8秒前
8秒前
海带拳大力士完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123189
求助须知:如何正确求助?哪些是违规求助? 4327690
关于积分的说明 13485306
捐赠科研通 4161935
什么是DOI,文献DOI怎么找? 2281094
邀请新用户注册赠送积分活动 1282577
关于科研通互助平台的介绍 1221658