How to Recover a Secret with O(n) Additions

秘密分享 正确性 计算机科学 可验证秘密共享 同态秘密共享 沙米尔的秘密分享 密码学 理论计算机科学 同态加密 指数 常量(计算机编程) 离散数学 数学 算法 加密 计算机安全 语言学 哲学 集合(抽象数据类型) 程序设计语言
作者
Benny Applebaum,Oded Nir,Benny Pinkas
出处
期刊:Lecture Notes in Computer Science 卷期号:: 236-262 被引量:1
标识
DOI:10.1007/978-3-031-38557-5_8
摘要

Threshold cryptography is typically based on the idea of secret-sharing a private-key $$s\in F$$ "in the exponent" of some cryptographic group G, or more generally, encoding s in some linearly homomorphic domain. In each invocation of the threshold system (e.g., for signing or decrypting) an "encoding" of the secret is being recovered and so the complexity, measured as the number of group multiplications over G, is equal to the number of F-additions that are needed to reconstruct the secret. Motivated by this scenario, we initiate the study of n-party secret-sharing schemes whose reconstruction algorithm makes a minimal number of additions. The complexity of existing schemes either scales linearly with $$n\log |F|$$ (e.g., Shamir, CACM'79) or, at least, quadratically with n independently of the size of the domain F (e.g., Cramer-Xing, EUROCRYPT '20). This leaves open the existence of a secret sharing whose recovery algorithm can be computed by performing only O(n) additions. We resolve the question in the affirmative and present such a near-threshold secret sharing scheme that provides privacy against unauthorized sets of density at most $$\tau _p$$ , and correctness for authorized sets of density at least $$\tau _c$$ , for any given arbitrarily close constants $$\tau _p<\tau _c$$ . Reconstruction can be computed by making at most O(n) additions and, in addition, (1) the share size is constant, (2) the sharing procedure also makes only O(n) additions, and (3) the scheme is a blackbox secret-sharing scheme, i.e., the sharing and reconstruction algorithms work universally for all finite abelian groups F. Prior to our work, no such scheme was known even without features (1)–(3) and even for the ramp setting where $$\tau _p$$ and $$\tau _c$$ are far apart. As a by-product, we derive the first blackbox near-threshold secret-sharing scheme with linear-time sharing. We also present several concrete instantiations of our approach that seem practically efficient (e.g., for threshold discrete-log-based signatures). Our constructions are combinatorial in nature. We combine graph-based erasure codes that support "peeling-based" decoding with a new randomness extraction method that is based on inner-product with a small-integer vector. We also introduce a general concatenation-like transform for secret-sharing schemes that allows us to arbitrarily shrink the privacy-correctness gap with a minor overhead. Our techniques enrich the secret-sharing toolbox and, in the context of blackbox secret sharing, provide a new alternative to existing number-theoretic approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Parotodus发布了新的文献求助10
刚刚
刚刚
人间发布了新的文献求助10
4秒前
在水一方应助负责怀莲采纳,获得10
5秒前
许之北完成签到 ,获得积分10
5秒前
lithium完成签到 ,获得积分10
5秒前
_ban发布了新的文献求助10
6秒前
Trista0036发布了新的文献求助10
6秒前
Ava应助迨你个迨迨采纳,获得10
6秒前
小于完成签到,获得积分10
7秒前
英姑应助sci_zt采纳,获得10
8秒前
123456789完成签到,获得积分10
9秒前
坚定小松鼠完成签到,获得积分10
9秒前
青青草完成签到,获得积分10
10秒前
一五完成签到,获得积分10
11秒前
wy发布了新的文献求助10
11秒前
ga完成签到,获得积分10
12秒前
byron完成签到,获得积分10
13秒前
anny2022发布了新的文献求助10
13秒前
15秒前
16秒前
16秒前
科研小趴菜完成签到 ,获得积分10
18秒前
阿发发布了新的文献求助10
18秒前
18秒前
含蓄的大船完成签到,获得积分10
19秒前
传奇3应助bofu采纳,获得10
19秒前
欣喜眼神发布了新的文献求助10
20秒前
充电宝应助罗山柳采纳,获得10
20秒前
称心的可乐完成签到,获得积分10
21秒前
22秒前
敏敏完成签到,获得积分10
23秒前
23秒前
24秒前
科研通AI5应助Suzy采纳,获得10
25秒前
负责怀莲发布了新的文献求助10
25秒前
小马甲应助葭月十七采纳,获得10
26秒前
可爱的函函应助bofu采纳,获得10
28秒前
JamesPei应助欣喜眼神采纳,获得10
28秒前
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Handbook on Inequality and Social Capital 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3546412
求助须知:如何正确求助?哪些是违规求助? 3123558
关于积分的说明 9355739
捐赠科研通 2822124
什么是DOI,文献DOI怎么找? 1551271
邀请新用户注册赠送积分活动 723287
科研通“疑难数据库(出版商)”最低求助积分说明 713690