Peritumoral Radiomics for Identification of Telomerase Reverse Transcriptase Promoter Mutation in Patients With Glioblastoma Based on Preoperative MRI

医学 接收机工作特性 磁共振成像 卷积神经网络 突变 端粒酶逆转录酶 无线电技术 曼惠特尼U检验 曲线下面积 核医学 放射科 人工智能 内科学 端粒酶 基因 遗传学 生物 计算机科学 药代动力学
作者
Hongbo Zhang,Beibei Zhou,Hanwen Zhang,Yuze Zhang,Lei Yi,Biao Huang
出处
期刊:Canadian Association of Radiologists journal [SAGE]
卷期号:75 (1): 143-152 被引量:3
标识
DOI:10.1177/08465371231183309
摘要

Purpose: To evaluate the value of intra- and peritumoral deep learning (DL) features based on multi-parametric magnetic resonance imaging (MRI) for identifying telomerase reverse transcriptase (TERT) promoter mutation in glioblastoma (GBM). Methods: In this study, we included 229 patients with GBM who underwent preoperative MRI in two hospitals between November 2016 and September 2022. We used four 2D Convolutional Neural Networks (GoogLeNet, DenseNet121, VGG16, and MobileNetV3-Large) to extract intra- and peritumoral DL features. The Mann–Whitney U test, Pearson correlation analysis, least absolute shrinkage and selection operator, and logistic regression analysis were used for feature selection and construction of DL radiomics (DLR) signatures in different regions. These multi-parametric and multi-region signatures were combined to identify TERT promoter mutation. The area under the receiver operating characteristic curve (AUC) was used to evaluate the effects of the signatures. Results: The signatures based on the DL features from the peritumoral regions with expansion distances of 2 mm, 8 mm, and 10 mm using the GoogLeNet architecture correlated with the optimal AUC values (test set: .823, .753, and .768) in the T2-weighted, T1-weighted contrast-enhanced, and T1-weighted images. Using the stacking fusion method, DLR with multi-parameter and multi-region fusion achieved the best discrimination with AUC values of .948 and .902 in the training and test sets, respectively. Conclusions: The radiomics model based on the fusion of multi-parameter MRI intra- and peritumoral DLR signatures may help to identify TERT promoter mutation in patients with GBM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
噔噔噔完成签到,获得积分10
1秒前
3秒前
CipherSage应助端庄的萝采纳,获得10
4秒前
4秒前
lu发布了新的文献求助10
4秒前
卷卷516发布了新的文献求助10
4秒前
Lucas应助夏天的西瓜采纳,获得10
5秒前
6秒前
6秒前
wanci应助Bellala采纳,获得10
7秒前
Ziyi_Xu发布了新的文献求助10
7秒前
8秒前
8秒前
MishimaErika完成签到,获得积分10
9秒前
Jzzine发布了新的文献求助10
10秒前
ddj发布了新的文献求助10
10秒前
噔噔噔发布了新的文献求助10
11秒前
11秒前
11秒前
可乐发布了新的文献求助10
11秒前
mangguobale发布了新的文献求助10
12秒前
烟花应助lu采纳,获得10
12秒前
斯文败类应助陈永伟采纳,获得10
12秒前
汉堡包应助Leo采纳,获得10
12秒前
伍迎海发布了新的文献求助10
12秒前
12秒前
CipherSage应助刻苦的晓槐采纳,获得10
13秒前
13秒前
劲秉应助起名困难采纳,获得30
15秒前
way完成签到,获得积分10
15秒前
16秒前
嗯呢发布了新的文献求助10
17秒前
科研通AI2S应助mangguobale采纳,获得30
17秒前
17秒前
ma发布了新的文献求助10
17秒前
嘻嘻嘻发布了新的文献求助10
18秒前
hhhhh发布了新的文献求助10
18秒前
20秒前
lcf发布了新的文献求助10
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664