Colorectal Cancer Recognition Using Deep Learning on Histopathology Images

深度学习 人工智能 结直肠癌 支持向量机 机器学习 癌症 计算机科学 卷积神经网络 特征提取 医学 模式识别(心理学) 内科学
作者
Amgad Muneer,Shakirah Mohd Taib,Mohd Hilmi Hasan,Alawi Alqushaibi
标识
DOI:10.1109/cita58204.2023.10262551
摘要

Colorectal Cancer (CRC) is a prevalent and deadly disease, and accurate and timely diagnosis is essential for improving patient outcomes. The use of deep learning in medical imaging offers a promising avenue for achieving this goal. The ability to accurately identify different types of cancer cells can aid in treatment planning and prognosis and may ultimately help to save lives. This study proposes two models, radiomic-based Support Vector Machine (SVM) and a deep-learning model to recognize different types of cells in colorectal cancer using pathological images. In the first model, the radiomics features are extracted from the histopathology images and SVM used for CRC classification. The second model extracted the deep learning features and classified the CRC using Res-Net-18. The study utilized a dataset of 5000 pathological images of colorectal cancer, with eight classes of cells to be recognized. The deep learning model achieved high scores in terms of recall, precision, F1-score, and accuracy for each class, with an overall accuracy score of 0.95. These results demonstrate the potential of deep learning in medical imaging and cancer diagnosis. Our findings suggest that deep learning could be a powerful tool for accurately diagnosing different types of cancer cells, aiding in treatment planning and prognosis. Finally, this study contributes to the growing body of literature on the use of deep learning in medical imaging and cancer diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
1秒前
ALONE完成签到,获得积分10
2秒前
gx完成签到,获得积分10
2秒前
3秒前
充电宝应助好运莲莲采纳,获得10
3秒前
水濑心源完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
5秒前
笙霜半夏完成签到 ,获得积分10
6秒前
6秒前
6秒前
所所应助科研通管家采纳,获得10
6秒前
Liu应助科研通管家采纳,获得10
6秒前
失眠夏山发布了新的文献求助10
6秒前
Water应助科研通管家采纳,获得10
6秒前
张雷应助科研通管家采纳,获得20
6秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
朱建军应助科研通管家采纳,获得10
7秒前
水木应助科研通管家采纳,获得10
7秒前
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
lucas发布了新的文献求助10
7秒前
LF应助科研通管家采纳,获得30
7秒前
小马甲应助科研通管家采纳,获得10
7秒前
追寻航空应助科研通管家采纳,获得10
7秒前
充电宝应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
充电宝应助李李采纳,获得10
8秒前
pluto应助科研通管家采纳,获得10
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
研友_ngKyqn发布了新的文献求助10
9秒前
欣喜靖发布了新的文献求助10
9秒前
9秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979479
求助须知:如何正确求助?哪些是违规求助? 3523421
关于积分的说明 11217607
捐赠科研通 3260944
什么是DOI,文献DOI怎么找? 1800264
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807126