A self-attention based contrastive learning method for bearing fault diagnosis

计算机科学 人工智能 可解释性 机器学习 模式识别(心理学) 特征提取 半监督学习 经济短缺 监督学习 数据挖掘 人工神经网络 语言学 哲学 政府(语言学)
作者
Long Cui,Xincheng Tian,Qingzhe Wei,Yan Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121645-121645 被引量:48
标识
DOI:10.1016/j.eswa.2023.121645
摘要

The shortage of labeled data is a major obstacle to the practical application of advanced fault diagnosis technologies, and the large amount of unlabeled data may be the key to solving this problem. This paper proposes a self-attention based contrastive leaning method for bearing fault diagnosis which utilizes the unlabeled data for self-supervised learning. Using the self-attention-based signal transformer as the backbone, the proposed method is able to learn feature extraction capability from a large number of unlabeled data by contrastive learning using only positive samples. Then using a small number of labeled data for fine-tuning, the proposed method can perform accurate fault diagnosis. Experiments using both run-to-failure and artificial fault vibration signal datasets show that the proposed method can not only outperform other semi-supervised or self-supervised learning methods but also exceed the accuracy of supervised learning methods in case of insufficient labels. The visualization shows the interpretability of the model and the feature extraction ability obtained from self-supervised pre-training.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
情怀应助lml采纳,获得10
2秒前
刘66完成签到,获得积分20
2秒前
2秒前
3秒前
英俊的铭应助吃饱再睡采纳,获得10
3秒前
SciGPT应助Just.M采纳,获得10
4秒前
罗小马完成签到 ,获得积分10
4秒前
单薄含巧发布了新的文献求助10
4秒前
卡卡西应助qwp采纳,获得20
5秒前
6秒前
豌豆发布了新的文献求助10
7秒前
修张加油发布了新的文献求助30
8秒前
Singularity举报景行求助涉嫌违规
8秒前
8秒前
读者发布了新的文献求助10
9秒前
李金奥发布了新的文献求助10
9秒前
10秒前
iNk应助YN采纳,获得20
10秒前
追寻的丹烟完成签到,获得积分10
12秒前
12秒前
12秒前
华仔应助upupup采纳,获得10
12秒前
威武从霜完成签到,获得积分20
12秒前
13秒前
hkh发布了新的文献求助10
13秒前
钇点点发布了新的文献求助10
15秒前
shinysparrow应助warmsnow采纳,获得200
15秒前
难过以晴完成签到,获得积分10
15秒前
16秒前
灵溪完成签到 ,获得积分10
16秒前
16秒前
air-yi完成签到,获得积分10
16秒前
锐哥发布了新的文献求助10
16秒前
16秒前
白衣轻叹发布了新的文献求助10
17秒前
17秒前
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952150
求助须知:如何正确求助?哪些是违规求助? 3497645
关于积分的说明 11088172
捐赠科研通 3228209
什么是DOI,文献DOI怎么找? 1784718
邀请新用户注册赠送积分活动 868855
科研通“疑难数据库(出版商)”最低求助积分说明 801281