Construction and application of knowledge graph for construction accidents based on deep learning

施工现场安全 领域知识 计算机科学 知识表示与推理 知识抽取 知识工程 知识管理 人工智能 工程类 结构工程
作者
Wenjing Wu,Caifeng Wen,Qi Yuan,Qiulan Chen,Yunzhong Cao
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
卷期号:32 (2): 1097-1121 被引量:11
标识
DOI:10.1108/ecam-03-2023-0255
摘要

Purpose Learning from safety accidents and sharing safety knowledge has become an important part of accident prevention and improving construction safety management. Considering the difficulty of reusing unstructured data in the construction industry, the knowledge in it is difficult to be used directly for safety analysis. The purpose of this paper is to explore the construction of construction safety knowledge representation model and safety accident graph through deep learning methods, extract construction safety knowledge entities through BERT-BiLSTM-CRF model and propose a data management model of data–knowledge–services. Design/methodology/approach The ontology model of knowledge representation of construction safety accidents is constructed by integrating entity relation and logic evolution. Then, the database of safety incidents in the architecture, engineering and construction (AEC) industry is established based on the collected construction safety incident reports and related dispute cases. The construction method of construction safety accident knowledge graph is studied, and the precision of BERT-BiLSTM-CRF algorithm in information extraction is verified through comparative experiments. Finally, a safety accident report is used as an example to construct the AEC domain construction safety accident knowledge graph (AEC-KG), which provides visual query knowledge service and verifies the operability of knowledge management. Findings The experimental results show that the combined BERT-BiLSTM-CRF algorithm has a precision of 84.52%, a recall of 92.35%, and an F1 value of 88.26% in named entity recognition from the AEC domain database. The construction safety knowledge representation model and safety incident knowledge graph realize knowledge visualization. Originality/value The proposed framework provides a new knowledge management approach to improve the safety management of practitioners and also enriches the application scenarios of knowledge graph. On the one hand, it innovatively proposes a data application method and knowledge management method of safety accident report that integrates entity relationship and matter evolution logic. On the other hand, the legal adjudication dimension is innovatively added to the knowledge graph in the construction safety field as the basis for the postincident disposal measures of safety accidents, which provides reference for safety managers' decision-making in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
情怀应助shirleeyeahe采纳,获得10
刚刚
1秒前
元元应助xzy采纳,获得20
1秒前
泥花完成签到,获得积分10
1秒前
247793325完成签到,获得积分20
1秒前
眼睛大的冰岚完成签到,获得积分10
1秒前
YY完成签到 ,获得积分10
1秒前
2秒前
雨天慢行完成签到,获得积分10
2秒前
韦威风发布了新的文献求助10
2秒前
科目三应助深情的不评采纳,获得10
2秒前
飞快的梦易完成签到,获得积分10
3秒前
Akim应助1b采纳,获得10
3秒前
末岛完成签到,获得积分10
3秒前
sweetbearm应助benben采纳,获得10
3秒前
3秒前
4秒前
科研通AI5应助今今采纳,获得10
4秒前
通~发布了新的文献求助10
4秒前
YY完成签到,获得积分10
4秒前
首席医官完成签到,获得积分10
5秒前
坚定迎天完成签到,获得积分10
5秒前
Zzzoey发布了新的文献求助10
6秒前
搜集达人应助小罗飞飞飞采纳,获得10
6秒前
詹卫卫完成签到 ,获得积分10
6秒前
6秒前
宇_发布了新的文献求助20
6秒前
7秒前
esdeath发布了新的文献求助10
7秒前
云轩完成签到,获得积分10
7秒前
7秒前
7秒前
自然乐松发布了新的文献求助10
7秒前
yesir完成签到,获得积分10
8秒前
普雅花的等待完成签到,获得积分10
8秒前
想人陪的以云完成签到,获得积分10
9秒前
科研通AI5应助德德采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794