Construction and application of knowledge graph for construction accidents based on deep learning

施工现场安全 领域知识 计算机科学 知识表示与推理 知识抽取 知识工程 知识管理 人工智能 工程类 结构工程
作者
Wenjing Wu,Caifeng Wen,Qi Yuan,Qiulan Chen,Yunzhong Cao
出处
期刊:Engineering, Construction and Architectural Management [Emerald (MCB UP)]
被引量:3
标识
DOI:10.1108/ecam-03-2023-0255
摘要

Purpose Learning from safety accidents and sharing safety knowledge has become an important part of accident prevention and improving construction safety management. Considering the difficulty of reusing unstructured data in the construction industry, the knowledge in it is difficult to be used directly for safety analysis. The purpose of this paper is to explore the construction of construction safety knowledge representation model and safety accident graph through deep learning methods, extract construction safety knowledge entities through BERT-BiLSTM-CRF model and propose a data management model of data–knowledge–services. Design/methodology/approach The ontology model of knowledge representation of construction safety accidents is constructed by integrating entity relation and logic evolution. Then, the database of safety incidents in the architecture, engineering and construction (AEC) industry is established based on the collected construction safety incident reports and related dispute cases. The construction method of construction safety accident knowledge graph is studied, and the precision of BERT-BiLSTM-CRF algorithm in information extraction is verified through comparative experiments. Finally, a safety accident report is used as an example to construct the AEC domain construction safety accident knowledge graph (AEC-KG), which provides visual query knowledge service and verifies the operability of knowledge management. Findings The experimental results show that the combined BERT-BiLSTM-CRF algorithm has a precision of 84.52%, a recall of 92.35%, and an F1 value of 88.26% in named entity recognition from the AEC domain database. The construction safety knowledge representation model and safety incident knowledge graph realize knowledge visualization. Originality/value The proposed framework provides a new knowledge management approach to improve the safety management of practitioners and also enriches the application scenarios of knowledge graph. On the one hand, it innovatively proposes a data application method and knowledge management method of safety accident report that integrates entity relationship and matter evolution logic. On the other hand, the legal adjudication dimension is innovatively added to the knowledge graph in the construction safety field as the basis for the postincident disposal measures of safety accidents, which provides reference for safety managers' decision-making in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助huihuihui采纳,获得10
刚刚
稞小弟完成签到,获得积分10
3秒前
3秒前
随机子应助77采纳,获得10
5秒前
10秒前
星辰大海应助秃驴采纳,获得10
13秒前
十九发布了新的文献求助10
13秒前
WYR完成签到 ,获得积分10
15秒前
开心瓜瓜瓜完成签到,获得积分10
19秒前
19秒前
22秒前
22秒前
江流儿发布了新的文献求助10
24秒前
Lucas应助神华采纳,获得10
25秒前
卫澜发布了新的文献求助10
25秒前
26秒前
26秒前
27秒前
爱吃巧乐兹的猹完成签到 ,获得积分20
28秒前
科研通AI2S应助yinwenchen采纳,获得10
28秒前
淼淼之锋完成签到 ,获得积分10
28秒前
林小雨完成签到,获得积分10
29秒前
秃驴发布了新的文献求助10
30秒前
Apr9810h完成签到 ,获得积分10
31秒前
可耐的三德完成签到 ,获得积分10
32秒前
33秒前
34秒前
34秒前
星辰大海应助11采纳,获得10
35秒前
漏晨完成签到,获得积分10
36秒前
天天快乐应助lihan123采纳,获得10
36秒前
江流儿完成签到,获得积分10
36秒前
秃驴完成签到,获得积分10
37秒前
37秒前
huihuihui发布了新的文献求助10
38秒前
田様应助郝宝真采纳,获得10
39秒前
神华发布了新的文献求助10
39秒前
完美世界应助pf采纳,获得10
40秒前
赘婿应助卫澜采纳,获得10
42秒前
42秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165460
求助须知:如何正确求助?哪些是违规求助? 2816499
关于积分的说明 7912912
捐赠科研通 2476092
什么是DOI,文献DOI怎么找? 1318663
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388