An unsupervised spatiotemporal fusion network augmented with random mask and time-relative information modulation for anomaly detection of machines with multiple measuring points

计算机科学 异常检测 人工智能 传感器融合 模式识别(心理学)
作者
Kaiyu Zhang,Jinglong Chen,Chi-Guhn Lee,Shuilong He
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:237: 121506-121506 被引量:3
标识
DOI:10.1016/j.eswa.2023.121506
摘要

In industrial environments, individual sensor is easily affected by background noise, etc. In order to improve the reliability of anomaly detections, sensors are arranged at multiple measuring points to collect monitoring data of machines. However, under the coupling of vibration responses of multiple components of machines, the complex nonlinear relationship between monitoring data of multiple measuring points makes it difficult to achieve the best feature extraction and fusion effect, which reduces the accuracy of anomaly detection. To solve this problem, an unsupervised spatiotemporal fusion network augmented with random mask and time-relative information modulation is proposed. Firstly, we creatively propose random mask and modulated signal generation method based on mask index to learn the dependence of waveform and time dimension and achieve temporal dimension fusion of signals. Based on end-to-end training, modulated signals are also more conducive to spatial fusion. Then, to fully exploit the correlation between monitoring data of multiple measuring points and obtain the best spatial dimension fusion effect, a multi-head graph neural network based on self-attention weight matrix is carried out. Finally, we use transformer encoder to reconstruct the signal of each measuring point and obtain reconstruction error. Based on exponentially weighted moving average, anomaly detection threshold is obtained. Two anomaly detection experiments are conducted, and accuracy of 99.78%, 99% are achieved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
拼搏灵安完成签到 ,获得积分10
2秒前
2秒前
徐小赞完成签到 ,获得积分10
3秒前
3秒前
3秒前
语未既发布了新的文献求助10
4秒前
jie关闭了jie文献求助
4秒前
田様应助缓慢寒梦采纳,获得10
4秒前
75986686发布了新的文献求助10
5秒前
Lmy发布了新的文献求助10
5秒前
清爽的柚子完成签到 ,获得积分10
8秒前
鱼鱼完成签到 ,获得积分10
9秒前
Hy完成签到,获得积分10
9秒前
调研昵称发布了新的文献求助10
9秒前
tz发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
今后应助露似珍珠月似弓采纳,获得10
12秒前
13秒前
14秒前
sun发布了新的文献求助10
14秒前
小智0921完成签到,获得积分10
15秒前
15秒前
语未既完成签到,获得积分10
15秒前
鲤鱼笑白完成签到,获得积分20
15秒前
失眠梦柏发布了新的文献求助10
16秒前
zebs发布了新的文献求助10
16秒前
派小星完成签到 ,获得积分10
16秒前
清风发布了新的文献求助10
18秒前
Darlin完成签到,获得积分10
19秒前
Yang完成签到,获得积分10
19秒前
甘牡娟完成签到,获得积分10
20秒前
ark861023发布了新的文献求助30
20秒前
21秒前
火星上香菇完成签到,获得积分10
23秒前
Akim应助舒服的踏歌采纳,获得10
24秒前
青街向晚完成签到,获得积分10
27秒前
28秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919