Deep learning with CBAM-based CNN for batch process quality prediction

计算机科学 过度拟合 卷积神经网络 水准点(测量) 过程(计算) 特征(语言学) 人工智能 一般化 块(置换群论) 人工神经网络 数学 操作系统 地理 哲学 数学分析 几何学 语言学 大地测量学
作者
Xiaoqiang Zhao,Benben Tuo,Yongyong Hui
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:34 (11): 115123-115123 被引量:4
标识
DOI:10.1088/1361-6501/aceb82
摘要

Abstract Data-driven quality prediction model has been widely used in product estimation of batch processes. However, the initial conditions of different batches in batch process are different, and the multiphase characteristics and nonlinearity in batch are not conducive to the quality prediction. To solve these problems, a model for batch process quality prediction based on a convolutional neural network (CNN) is proposed. Firstly, in order to enhance data characteristics and reduce model computing time, a maximum information coefficient (MIC) method based on mutual information is used to select variables according to the correlation between process variables and quality variables. Secondly, the quality prediction model of convolutional block attention module (CBAM)-CNN based on the attention mechanism is established. On the one hand, an improved CBAM is fused into the CNN. The input feature mapping is re-calibrated to focus on useful feature information and weaken irrelevant redundant information in each sliding window. On the other hand, by introducing an improved convolutional module with double-band skip connection lines, the backpropagation speed of the CBAM-CNN model is accelerated, which can effectively avoid the occurrence of the overfitting problem. Finally, the data of batch process is used as the input of the prediction model. The superiority and effectiveness of the proposed model are verified by predicting the quality variable of the penicillin fermentation process simulation benchmark and the industrial-scale penicillin fermentation process. It is proved that the proposed model has better generalization performance in the quality prediction of the penicillin fermentation process with different control strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huwan完成签到,获得积分10
1秒前
1秒前
顺顺完成签到,获得积分10
1秒前
倩Q完成签到,获得积分10
3秒前
boryant24发布了新的文献求助50
3秒前
Jack应助CC采纳,获得10
4秒前
wd发布了新的文献求助30
5秒前
pny发布了新的文献求助10
5秒前
小刘一定能读C9博完成签到 ,获得积分10
7秒前
7秒前
FashionBoy应助能干的孤丝采纳,获得10
9秒前
搜集达人应助ww采纳,获得10
9秒前
晴空万里完成签到,获得积分10
9秒前
11秒前
11秒前
14秒前
在水一方应助天真的灵煌采纳,获得30
14秒前
15秒前
15秒前
pp完成签到,获得积分10
16秒前
追寻的平安完成签到 ,获得积分10
16秒前
FG发布了新的文献求助10
16秒前
pny发布了新的文献求助10
18秒前
CipherSage应助激昂的背包采纳,获得10
19秒前
看i恶魔红毯完成签到,获得积分10
19秒前
cldg发布了新的文献求助10
20秒前
pp发布了新的文献求助10
21秒前
21秒前
袁大头发布了新的文献求助10
22秒前
23秒前
哭泣忆文完成签到,获得积分10
23秒前
23秒前
24秒前
25秒前
温柔的语柔完成签到,获得积分10
25秒前
26秒前
一期一会发布了新的文献求助10
27秒前
27秒前
27秒前
兴奋的白秋完成签到 ,获得积分10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
On the identity and nomenclature of a climbing bamboo Melocalamus macclellandii 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557572
求助须知:如何正确求助?哪些是违规求助? 3132664
关于积分的说明 9398623
捐赠科研通 2832834
什么是DOI,文献DOI怎么找? 1557063
邀请新用户注册赠送积分活动 727072
科研通“疑难数据库(出版商)”最低求助积分说明 716184