地质学
软流圈
金伯利岩
超大陆
克拉通
岩石圈
地幔(地质学)
裂谷
地球化学
岩浆作用
地球科学
被动保证金
岩石学
古生物学
构造学
作者
Thomas M. Gernon,S. M. Jones,Sascha Brune,Thea Hincks,Martin R. Palmer,John C. Schumacher,Rebecca M. Primiceri,M. Paul Field,William L. Griffin,Suzanne Y. O’Reilly,Derek Keir,Christopher J. Spencer,Andrew Merdith,Anne Glerum
出处
期刊:Nature
[Springer Nature]
日期:2023-07-26
卷期号:620 (7973): 344-350
被引量:7
标识
DOI:10.1038/s41586-023-06193-3
摘要
Kimberlites are volatile-rich, occasionally diamond-bearing magmas that have erupted explosively at Earth's surface in the geologic past1-3. These enigmatic magmas, originating from depths exceeding 150 km in Earth's mantle1, occur in stable cratons and in pulses broadly synchronous with supercontinent cyclicity4. Whether their mobilization is driven by mantle plumes5 or by mechanical weakening of cratonic lithosphere4,6 remains unclear. Here we show that most kimberlites spanning the past billion years erupted about 30 million years (Myr) after continental breakup, suggesting an association with rifting processes. Our dynamical and analytical models show that physically steep lithosphere-asthenosphere boundaries (LABs) formed during rifting generate convective instabilities in the asthenosphere that slowly migrate many hundreds to thousands of kilometres inboard of rift zones. These instabilities endure many tens of millions of years after continental breakup and destabilize the basal tens of kilometres of the cratonic lithosphere, or keel. Displaced keel is replaced by a hot, upwelling mixture of asthenosphere and recycled volatile-rich keel in the return flow, causing decompressional partial melting. Our calculations show that this process can generate small-volume, low-degree, volatile-rich melts, closely matching the characteristics expected of kimberlites1-3. Together, these results provide a quantitative and mechanistic link between kimberlite episodicity and supercontinent cycles through progressive disruption of cratonic keels.
科研通智能强力驱动
Strongly Powered by AbleSci AI