亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Adaptive Feature Fusion With Attention-Guided Small Target Detection in Remote Sensing Images

计算机科学 稳健性(进化) 人工智能 假警报 计算机视觉 特征提取 特征(语言学) 图像分辨率 恒虚警率 背景(考古学) 模式识别(心理学) 古生物学 哲学 化学 基因 生物 生物化学 语言学
作者
Tianjun Shi,Jinnan Gong,Jianming Hu,Xiyang Zhi,Guiyi Zhu,Binhuan Yuan,Yu Sun,Wei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:8
标识
DOI:10.1109/tgrs.2023.3323409
摘要

Small target detection in remote sensing images has considerable significance in practical applications such as military dynamic discrimination and traffic monitoring. However, the limited appearance features of small-scale targets and the widespread false alarm sources make small target detection in remote sensing images a tough challenge. To address these problems, we propose a novel small detection method by employing an adaptive multi-level feature fusion module (AMFFM) and an attention-augmented high-resolution head (AAHRH). Specifically, AMFFM is designed to suppress the interference of false alarm sources in complicated scenes. We upsample the high-level features by the context modeling of semantic information and refine the low-level features for noise removal. Then the enhanced multi-level features are fused based on the spatial and channel significance. After that, AAHRH is put forward to enhance the perception of small targets by embedding cross-dimension interaction with the attention mechanism. The prediction heads are reconstructed with high-resolution layers to improve the detection performance in densely distributed scenes. We conduct dilated and comparison experiments on a constructed small car dataset, a public small ship dataset, and the VEDAI dataset. The experimental results on two datasets verify the effectiveness and robustness of the proposed method with the state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
愉快的犀牛完成签到 ,获得积分10
19秒前
29秒前
32秒前
学分完成签到 ,获得积分10
33秒前
zilhua发布了新的文献求助10
36秒前
36秒前
zilhua完成签到,获得积分10
42秒前
CodeCraft应助科研通管家采纳,获得10
47秒前
ASXC完成签到,获得积分20
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助30
1分钟前
Vaseegara完成签到 ,获得积分10
1分钟前
1分钟前
wanci应助zzzxh采纳,获得10
1分钟前
1分钟前
RAIN发布了新的文献求助10
1分钟前
852应助RAIN采纳,获得10
2分钟前
2分钟前
小飞猪发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
yx_cheng应助科研通管家采纳,获得30
2分钟前
赘婿应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
4分钟前
所所应助科研通管家采纳,获得10
4分钟前
大模型应助科研通管家采纳,获得10
4分钟前
Milton_z完成签到 ,获得积分0
5分钟前
冬菇拉米发布了新的文献求助10
5分钟前
5分钟前
FashionBoy应助冬菇拉米采纳,获得10
5分钟前
wujiwuhui完成签到 ,获得积分10
5分钟前
大意的晓亦完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
TXZ06完成签到,获得积分10
6分钟前
duyitao完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
隐形曼青应助科研通管家采纳,获得10
6分钟前
yx_cheng应助科研通管家采纳,获得10
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008067
求助须知:如何正确求助?哪些是违规求助? 3547878
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188