二氧化碳
机制(生物学)
化学
能源消耗
相变
酒
饮酒量
环境科学
相(物质)
有机化学
废物管理
化学工程
工程物理
生态学
物理
工程类
生物
量子力学
作者
Wang Chen,Weixin Kong,Zhangfeng Dong,Bihong Lv,Guohua Jing,Zuoming Zhou
标识
DOI:10.1016/j.jes.2023.09.022
摘要
Phase change absorbents based on amine chemical absorption for CO2 capture exhibit energy-saving potential, but generally suffer from difficulties in CO2 regeneration. Alcohol, characterized as a protic reagent with a low dielectric constant, can provide free protons to the rich phase of the absorbent, thereby facilitating CO2 regeneration. In this investigation, N-aminoethylpiperazine (AEP)/sulfolane/H2O was employed as the liquid-liquid phase change absorbent, with alcohol serving as the regulator. First, appropriate ion pair models were constructed to simulate the solvent effect of the CO2 products in different alcohol solutions. The results demonstrated that these ion pair products reached the maximum solvation-free energy (ΔEsolvation) in the rich phase containing ethanol (EtOH). Desorption experiment results validated that the inclusion of EtOH led to a maximum regeneration rate of 0.00763 mol/min, thus confirming EtOH's suitability as the preferred regulator.. Quantum chemical calculations and 13C NMR characterization were performed, revealing that the addition of EtOH resulted in the partial conversion of AEP-carbamate (AEPCOO−) into a new product known as ethyl carbonate (C2H5OCOO−), which enhanced the regeneration reactivity. In addition, the decomposition paths of different CO2 products were simulated visually, and every reaction's activation energy (ΔEact) was calculated. Remarkably, the ΔEact for the decomposition of C2H5OCOO− (9.465 kJ/mol) was lower than that of the AEPCOO− (26.163 kJ/mol), implying that CO2 was more likely to be released. Finally, the regeneration energy consumption of the alcohol-regulated absorbent was estimated to be only 1.92 GJ/ton CO2, which had excellent energy-saving potential.
科研通智能强力驱动
Strongly Powered by AbleSci AI