A tool wear condition monitoring method for non-specific sensing signals

一般化 计算机科学 干扰(通信) 频道(广播) 加速度 卷积(计算机科学) 极限(数学) 信号(编程语言) 过程(计算) 基础(线性代数) 刀具磨损 残余物 时域 人工神经网络 数据挖掘 模式识别(心理学) 人工智能 算法 工程类 计算机视觉 数学 机械加工 机械工程 数学分析 计算机网络 物理 操作系统 程序设计语言 经典力学 几何学
作者
Yezhen Peng,Qinghua Song,Runqiong Wang,Xinyu Yang,Zhanqiang Liu,Zhaojun Liu
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:263: 108769-108769 被引量:8
标识
DOI:10.1016/j.ijmecsci.2023.108769
摘要

Real-time and accurate monitoring of tool wear conditions is crucial to achieving double optimization of production cost and product quality. However, the differences in the characteristics of different signals limit the ability of the monitoring model to generalize between sensing channels, which becomes an important factor limiting the promotion of the model. To solve this problem, an improved parallel residual network based on single-channel and non-specific sensing signals is proposed in this paper. The limitation of the single-channel signal with little information and poor anti-interference ability is overcome by adaptively extracting the multi-scale spatial features of the sensing signal. Hybrid dilated convolution is introduced to expand the receptive field, and then the long historical domain information is obtained. At the same time, the information dependence between layers is enhanced by introducing skip connections. These two designs ensure the perceptual generalization ability of the model. Considering the tool replacement time and the imbalance classification of labels, a comprehensive evaluation method is proposed for model performance evaluation. In addition, the variation law of tool wear in the milling process of Ti-6Al-4V thin-walled parts is investigated. Finally, the validity and transferability of the model are verified by two milling datasets with different cutting conditions. On the basis of ensuring the perceptual generalization ability of the model, the differences in model performance based on acceleration and cutting force signals are controlled within 4.5 % and 1 %, respectively, and the overall average recognition performance is 96.3 % and 92.5 %, respectively. This study provides a feasible solution for intelligent tool replacement in the actual machining environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiuxiu_27发布了新的文献求助10
1秒前
222完成签到,获得积分10
1秒前
zyz1132完成签到,获得积分10
1秒前
何处芳歇完成签到,获得积分10
2秒前
2秒前
LXYang完成签到,获得积分10
2秒前
2秒前
LL完成签到,获得积分10
2秒前
3秒前
3秒前
十月发布了新的文献求助20
4秒前
4秒前
针地很不戳完成签到,获得积分10
4秒前
5秒前
奋斗金连完成签到,获得积分10
5秒前
科研菜鸟完成签到,获得积分10
5秒前
圈圈发布了新的文献求助10
6秒前
zhanglh完成签到 ,获得积分10
6秒前
6秒前
Liu完成签到,获得积分10
6秒前
啊大大哇完成签到,获得积分10
6秒前
一平驳回了HEIKU应助
7秒前
7秒前
草莓奶昔完成签到 ,获得积分10
7秒前
cyx发布了新的文献求助10
7秒前
8秒前
littleJ完成签到,获得积分10
8秒前
Yolo发布了新的文献求助10
8秒前
阿尔法发布了新的文献求助10
9秒前
科研菜鸟发布了新的文献求助10
9秒前
Liu发布了新的文献求助10
9秒前
鱼跃完成签到,获得积分10
10秒前
烟花应助Ricardo采纳,获得10
11秒前
zsh完成签到,获得积分20
11秒前
共享精神应助青wu采纳,获得10
11秒前
11秒前
搜集达人应助十月采纳,获得10
12秒前
慕青应助十月采纳,获得10
12秒前
上官若男应助十月采纳,获得10
12秒前
平淡的亦丝应助十月采纳,获得20
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678