A tool wear condition monitoring method for non-specific sensing signals

一般化 计算机科学 干扰(通信) 频道(广播) 加速度 卷积(计算机科学) 极限(数学) 信号(编程语言) 过程(计算) 基础(线性代数) 刀具磨损 残余物 时域 人工神经网络 数据挖掘 模式识别(心理学) 人工智能 算法 工程类 计算机视觉 数学 机械加工 机械工程 数学分析 计算机网络 物理 操作系统 程序设计语言 经典力学 几何学
作者
Yezhen Peng,Qinghua Song,Runqiong Wang,Xinyu Yang,Zhanqiang Liu,Zhaojun Liu
出处
期刊:International Journal of Mechanical Sciences [Elsevier]
卷期号:263: 108769-108769 被引量:8
标识
DOI:10.1016/j.ijmecsci.2023.108769
摘要

Real-time and accurate monitoring of tool wear conditions is crucial to achieving double optimization of production cost and product quality. However, the differences in the characteristics of different signals limit the ability of the monitoring model to generalize between sensing channels, which becomes an important factor limiting the promotion of the model. To solve this problem, an improved parallel residual network based on single-channel and non-specific sensing signals is proposed in this paper. The limitation of the single-channel signal with little information and poor anti-interference ability is overcome by adaptively extracting the multi-scale spatial features of the sensing signal. Hybrid dilated convolution is introduced to expand the receptive field, and then the long historical domain information is obtained. At the same time, the information dependence between layers is enhanced by introducing skip connections. These two designs ensure the perceptual generalization ability of the model. Considering the tool replacement time and the imbalance classification of labels, a comprehensive evaluation method is proposed for model performance evaluation. In addition, the variation law of tool wear in the milling process of Ti-6Al-4V thin-walled parts is investigated. Finally, the validity and transferability of the model are verified by two milling datasets with different cutting conditions. On the basis of ensuring the perceptual generalization ability of the model, the differences in model performance based on acceleration and cutting force signals are controlled within 4.5 % and 1 %, respectively, and the overall average recognition performance is 96.3 % and 92.5 %, respectively. This study provides a feasible solution for intelligent tool replacement in the actual machining environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小文子完成签到 ,获得积分10
刚刚
8秒前
10秒前
10秒前
puzhongjiMiQ发布了新的文献求助10
12秒前
puzhongjiMiQ发布了新的文献求助10
12秒前
传奇3应助圆圆的波仔采纳,获得10
13秒前
puzhongjiMiQ发布了新的文献求助10
14秒前
puzhongjiMiQ发布了新的文献求助10
14秒前
xuyue发布了新的文献求助10
15秒前
洁净百川完成签到 ,获得积分10
17秒前
井小浩完成签到 ,获得积分10
18秒前
酷波er应助angel采纳,获得10
19秒前
NexusExplorer应助puzhongjiMiQ采纳,获得10
20秒前
香蕉觅云应助puzhongjiMiQ采纳,获得10
21秒前
23秒前
人小鸭儿大完成签到 ,获得积分10
26秒前
angel发布了新的文献求助20
32秒前
oyly完成签到 ,获得积分10
34秒前
WXM完成签到 ,获得积分10
37秒前
45秒前
武大帝77完成签到 ,获得积分10
47秒前
angel发布了新的文献求助10
51秒前
52秒前
54秒前
angel完成签到,获得积分10
1分钟前
chen完成签到 ,获得积分10
1分钟前
洋洋爱吃枣完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
饱满一手完成签到 ,获得积分10
1分钟前
阿俊1212发布了新的文献求助10
1分钟前
1分钟前
从别后忆相逢完成签到 ,获得积分10
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
Milton_z完成签到 ,获得积分10
2分钟前
潇洒的语蝶完成签到 ,获得积分10
2分钟前
草莓熊1215完成签到 ,获得积分10
2分钟前
2分钟前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139630
求助须知:如何正确求助?哪些是违规求助? 2790514
关于积分的说明 7795460
捐赠科研通 2446980
什么是DOI,文献DOI怎么找? 1301526
科研通“疑难数据库(出版商)”最低求助积分说明 626259
版权声明 601176