A tool wear condition monitoring method for non-specific sensing signals

一般化 计算机科学 干扰(通信) 频道(广播) 加速度 卷积(计算机科学) 极限(数学) 信号(编程语言) 过程(计算) 基础(线性代数) 刀具磨损 残余物 时域 人工神经网络 数据挖掘 模式识别(心理学) 人工智能 算法 工程类 计算机视觉 数学 机械加工 机械工程 数学分析 计算机网络 物理 几何学 经典力学 程序设计语言 操作系统
作者
Yezhen Peng,Qinghua Song,Runqiong Wang,Xinyu Yang,Zhanqiang Liu,Zhaojun Liu
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:263: 108769-108769 被引量:8
标识
DOI:10.1016/j.ijmecsci.2023.108769
摘要

Real-time and accurate monitoring of tool wear conditions is crucial to achieving double optimization of production cost and product quality. However, the differences in the characteristics of different signals limit the ability of the monitoring model to generalize between sensing channels, which becomes an important factor limiting the promotion of the model. To solve this problem, an improved parallel residual network based on single-channel and non-specific sensing signals is proposed in this paper. The limitation of the single-channel signal with little information and poor anti-interference ability is overcome by adaptively extracting the multi-scale spatial features of the sensing signal. Hybrid dilated convolution is introduced to expand the receptive field, and then the long historical domain information is obtained. At the same time, the information dependence between layers is enhanced by introducing skip connections. These two designs ensure the perceptual generalization ability of the model. Considering the tool replacement time and the imbalance classification of labels, a comprehensive evaluation method is proposed for model performance evaluation. In addition, the variation law of tool wear in the milling process of Ti-6Al-4V thin-walled parts is investigated. Finally, the validity and transferability of the model are verified by two milling datasets with different cutting conditions. On the basis of ensuring the perceptual generalization ability of the model, the differences in model performance based on acceleration and cutting force signals are controlled within 4.5 % and 1 %, respectively, and the overall average recognition performance is 96.3 % and 92.5 %, respectively. This study provides a feasible solution for intelligent tool replacement in the actual machining environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助SOS采纳,获得10
刚刚
勤劳煎蛋完成签到,获得积分10
1秒前
一颗蹦豆子完成签到,获得积分10
1秒前
马尊雅发布了新的文献求助10
2秒前
找论文的牛马完成签到,获得积分10
2秒前
靓丽冬灵发布了新的文献求助10
2秒前
我要好好学习完成签到,获得积分20
2秒前
啾啾完成签到,获得积分10
3秒前
Hello应助超帅沂采纳,获得10
4秒前
良仑发布了新的文献求助10
4秒前
不懂白完成签到 ,获得积分10
4秒前
南韵发布了新的文献求助20
4秒前
冷烟浮完成签到 ,获得积分10
5秒前
potatozhou完成签到,获得积分10
6秒前
3636发布了新的文献求助10
6秒前
7秒前
李健应助oyq采纳,获得10
7秒前
充满怪兽的世界完成签到,获得积分10
7秒前
小李给我支棱起来完成签到,获得积分10
7秒前
CodeCraft应助kern采纳,获得10
7秒前
Ghhhhn完成签到,获得积分10
8秒前
8秒前
8秒前
8秒前
tianle完成签到,获得积分10
9秒前
多情自古空余恨完成签到,获得积分10
10秒前
10秒前
gomm完成签到,获得积分10
11秒前
11秒前
慕青应助zouzou采纳,获得10
12秒前
Owen应助lisiying采纳,获得10
12秒前
Zr完成签到,获得积分10
13秒前
Jenny完成签到,获得积分10
13秒前
13秒前
lagom完成签到,获得积分10
13秒前
zp发布了新的文献求助10
13秒前
研友_VZG7GZ应助阿鑫采纳,获得10
13秒前
霸气的连虎完成签到 ,获得积分10
14秒前
14秒前
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960532
求助须知:如何正确求助?哪些是违规求助? 3506818
关于积分的说明 11132262
捐赠科研通 3239114
什么是DOI,文献DOI怎么找? 1789985
邀请新用户注册赠送积分活动 872079
科研通“疑难数据库(出版商)”最低求助积分说明 803128