Differences between journal and conference in computer science: a bibliometric view based on Bayesian network

贝叶斯网络 计算机科学 领域(数学) 科学计量学 数据科学 推论 文献计量学 情报学 集合(抽象数据类型) 人工智能 数据挖掘 图书馆学 数学 纯数学 程序设计语言
作者
Meng Sun,Mingliang Yue,Tingcan Ma
出处
期刊:Journal of Data and Information Science [Journal of Data and Information Science]
卷期号:8 (3): 47-60
标识
DOI:10.2478/jdis-2023-0017
摘要

Abstract Purpose This paper aims to investigate the differences between conference papers and journal papers in the field of computer science based on Bayesian network. Design/methodology/approach This paper investigated the differences between conference papers and journal papers in the field of computer science based on Bayesian network, a knowledge-representative framework that can model relationships among all variables in the network. We defined the variables required for Bayesian networks modeling, calculated the values of each variable based Aminer dataset (a literature data set in the field of computer science), learned the Bayesian network and derived some findings based on network inference. Findings The study found that conferences are more attractive to senior scholars, the academic impact of conference papers is slightly higher than journal papers, and it is uncertain whether conference papers are more innovative than journal papers. Research limitations The study was limited to the field of computer science and employed Aminer dataset as the sample. Further studies involving more diverse datasets and different fields could provide a more complete picture of the matter. Practical implications By demonstrating that Bayesian networks can effectively analyze issues in Scientometrics, the study offers valuable insights that may enhance researchers’ understanding of the differences between journal and conference in computer science. Originality/value Academic conferences play a crucial role in facilitating scholarly exchange and knowledge dissemination within the field of computer science. Several studies have been conducted to examine the distinctions between conference papers and journal papers in terms of various factors, such as authors, citations, h-index and others. Those studies were carried out from different (independent) perspectives, lacking a systematic examination of the connections and interactions between multiple perspectives. This paper supplements this deficiency based on Bayesian network modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学者发布了新的文献求助10
1秒前
2秒前
甜美白云发布了新的文献求助10
2秒前
Owen应助冷艳紫南采纳,获得10
3秒前
科研通AI2S应助加载中采纳,获得10
4秒前
Loooong应助gygy2000采纳,获得10
5秒前
李健的小迷弟应助gygy2000采纳,获得30
5秒前
费飞扬完成签到,获得积分10
5秒前
5秒前
朴实海亦完成签到,获得积分10
6秒前
zgxyws发布了新的文献求助10
7秒前
wassermelonen发布了新的文献求助10
8秒前
8秒前
大胆翎完成签到,获得积分10
8秒前
zzk111完成签到,获得积分10
10秒前
llp完成签到,获得积分10
10秒前
11秒前
13秒前
wangzai111发布了新的文献求助10
13秒前
chengjiang完成签到,获得积分10
13秒前
gygy2000完成签到,获得积分20
14秒前
Fancy完成签到,获得积分10
15秒前
jjj发布了新的文献求助10
15秒前
田様应助学者采纳,获得10
15秒前
16秒前
我爱螺蛳粉完成签到 ,获得积分10
16秒前
123发布了新的文献求助10
16秒前
16秒前
丘比特应助积极的奇异果采纳,获得10
18秒前
谭小谭发布了新的文献求助10
19秒前
21秒前
22秒前
22秒前
科研小白完成签到,获得积分10
22秒前
星辰完成签到,获得积分10
23秒前
Fancy发布了新的文献求助10
26秒前
26秒前
bubble完成签到,获得积分20
27秒前
27秒前
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158219
求助须知:如何正确求助?哪些是违规求助? 2809498
关于积分的说明 7882396
捐赠科研通 2468007
什么是DOI,文献DOI怎么找? 1313841
科研通“疑难数据库(出版商)”最低求助积分说明 630572
版权声明 601943