Differences between journal and conference in computer science: a bibliometric view based on Bayesian network

贝叶斯网络 计算机科学 领域(数学) 科学计量学 数据科学 推论 文献计量学 情报学 集合(抽象数据类型) 人工智能 数据挖掘 图书馆学 数学 程序设计语言 纯数学
作者
Meng Sun,Mingliang Yue,Tingcan Ma
出处
期刊:Journal of Data and Information Science [Chinese Academy of Sciences]
卷期号:8 (3): 47-60
标识
DOI:10.2478/jdis-2023-0017
摘要

Abstract Purpose This paper aims to investigate the differences between conference papers and journal papers in the field of computer science based on Bayesian network. Design/methodology/approach This paper investigated the differences between conference papers and journal papers in the field of computer science based on Bayesian network, a knowledge-representative framework that can model relationships among all variables in the network. We defined the variables required for Bayesian networks modeling, calculated the values of each variable based Aminer dataset (a literature data set in the field of computer science), learned the Bayesian network and derived some findings based on network inference. Findings The study found that conferences are more attractive to senior scholars, the academic impact of conference papers is slightly higher than journal papers, and it is uncertain whether conference papers are more innovative than journal papers. Research limitations The study was limited to the field of computer science and employed Aminer dataset as the sample. Further studies involving more diverse datasets and different fields could provide a more complete picture of the matter. Practical implications By demonstrating that Bayesian networks can effectively analyze issues in Scientometrics, the study offers valuable insights that may enhance researchers’ understanding of the differences between journal and conference in computer science. Originality/value Academic conferences play a crucial role in facilitating scholarly exchange and knowledge dissemination within the field of computer science. Several studies have been conducted to examine the distinctions between conference papers and journal papers in terms of various factors, such as authors, citations, h-index and others. Those studies were carried out from different (independent) perspectives, lacking a systematic examination of the connections and interactions between multiple perspectives. This paper supplements this deficiency based on Bayesian network modeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
了一李完成签到 ,获得积分10
刚刚
DT发布了新的文献求助10
1秒前
娟姐发布了新的文献求助10
2秒前
YJ888发布了新的文献求助10
2秒前
小白发布了新的文献求助10
3秒前
英俊白莲发布了新的文献求助10
3秒前
完美世界应助u深度采纳,获得10
3秒前
方勇飞发布了新的文献求助20
5秒前
taozi完成签到,获得积分10
5秒前
6秒前
虚幻秋白完成签到,获得积分20
6秒前
Hello应助LiQi采纳,获得10
6秒前
甜甜甜完成签到 ,获得积分10
8秒前
9秒前
ttong完成签到,获得积分10
9秒前
9秒前
虚幻秋白发布了新的文献求助10
10秒前
123完成签到 ,获得积分10
12秒前
12秒前
bkagyin应助海孩子采纳,获得30
15秒前
15秒前
15秒前
今后应助多情邑采纳,获得10
15秒前
李尚泽完成签到,获得积分10
16秒前
麦子发布了新的文献求助10
16秒前
LiQi完成签到,获得积分10
17秒前
好好好发布了新的文献求助10
17秒前
小蘑菇应助山楂采纳,获得10
19秒前
gogoyoco发布了新的文献求助10
19秒前
Cumin完成签到 ,获得积分10
19秒前
搜集达人应助舍予有服采纳,获得10
20秒前
20秒前
20秒前
20秒前
无花果应助rrgogo采纳,获得10
21秒前
活力的小猫咪完成签到 ,获得积分10
24秒前
幸福大白发布了新的文献求助10
25秒前
完美世界应助成就茗采纳,获得10
25秒前
YJ888发布了新的文献求助10
27秒前
云雾完成签到 ,获得积分10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989550
求助须知:如何正确求助?哪些是违规求助? 3531774
关于积分的说明 11254747
捐赠科研通 3270278
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882125
科研通“疑难数据库(出版商)”最低求助积分说明 809176