Correcting the Bias: Mitigating Multimodal Inconsistency Contrastive Learning for Multimodal Fake News Detection

计算机科学 多模式学习 模式 语义学(计算机科学) 人工智能 模态(人机交互) 情态动词 多模态 自然语言处理 社会科学 化学 社会学 万维网 高分子化学 程序设计语言
作者
Zhi Zeng,Mingmin Wu,Guodong Li,Xiang Li,Zhongqiang Huang,Ying Sha
标识
DOI:10.1109/icme55011.2023.00486
摘要

Multimodal fake news detection has become a topical research of fake news detection. Existing models have made great efforts in capturing and fusing multimodal semantics of news for classification. However, they overlooked mitigating inconsistency between different modalities, which may result in learning biased statistical information. Therefore, we propose a mitigating multimodal inconsistency contrastive learning framework (MMICF), which mitigates inconsistency in multi-modal relations for fake news detection. Inspired by various forms of artificial fake news, we summarize two patterns of multimodal inconsistency: local and global inconsistency. To mitigate local inconsistency in multimodal relations, we use a causal-relation reasoning module by causally removing the direct effects of the textual and visual entities. Considering the influence of global inconsistency in multimodal semantics, our contrastive learning framework mitigates the semantic deviation of contrastive text-image objectives, which are constrained into a unified semantic space by a modal unified module. Thus, our MMICF can jointly mitigate local and global inconsistency for further maximally exploiting multimodal consistent semantics for fake news detection. The extensive experimental results show that the MMICF can improve the performance of multimodal fake news detection and provide a novel paradigm for mitigating multimodal inconsistency contrastive learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助初一采纳,获得10
刚刚
刚刚
1秒前
个性的紫菜应助JIAN采纳,获得10
1秒前
旭东静静发布了新的文献求助10
2秒前
3秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
pp发布了新的文献求助10
6秒前
6秒前
未转头时皆梦完成签到,获得积分10
6秒前
脑洞疼应助hankpotter采纳,获得10
7秒前
SciGPT应助xiaoyuzi采纳,获得20
7秒前
芮rich完成签到,获得积分10
7秒前
a379896033完成签到 ,获得积分10
8秒前
望TIAN完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
syleaf完成签到 ,获得积分10
10秒前
今后应助圆锥香蕉采纳,获得20
10秒前
微笑孤云完成签到 ,获得积分10
10秒前
完美的沉鱼完成签到 ,获得积分10
11秒前
xutingfeng发布了新的文献求助10
11秒前
11秒前
12秒前
英俊的铭应助hrr采纳,获得10
12秒前
12秒前
望TIAN发布了新的文献求助10
13秒前
彭于晏应助pp采纳,获得10
13秒前
小二郎应助葡萄树采纳,获得10
13秒前
Owen应助summing采纳,获得10
13秒前
13秒前
13秒前
14秒前
王岚发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784155
求助须知:如何正确求助?哪些是违规求助? 5680888
关于积分的说明 15463131
捐赠科研通 4913434
什么是DOI,文献DOI怎么找? 2644642
邀请新用户注册赠送积分活动 1592485
关于科研通互助平台的介绍 1547106