Correcting the Bias: Mitigating Multimodal Inconsistency Contrastive Learning for Multimodal Fake News Detection

计算机科学 多模式学习 模式 语义学(计算机科学) 人工智能 模态(人机交互) 情态动词 多模态 自然语言处理 社会科学 化学 社会学 万维网 高分子化学 程序设计语言
作者
Zhi Zeng,Mingmin Wu,Guodong Li,Xiang Li,Zhongqiang Huang,Ying Sha
标识
DOI:10.1109/icme55011.2023.00486
摘要

Multimodal fake news detection has become a topical research of fake news detection. Existing models have made great efforts in capturing and fusing multimodal semantics of news for classification. However, they overlooked mitigating inconsistency between different modalities, which may result in learning biased statistical information. Therefore, we propose a mitigating multimodal inconsistency contrastive learning framework (MMICF), which mitigates inconsistency in multi-modal relations for fake news detection. Inspired by various forms of artificial fake news, we summarize two patterns of multimodal inconsistency: local and global inconsistency. To mitigate local inconsistency in multimodal relations, we use a causal-relation reasoning module by causally removing the direct effects of the textual and visual entities. Considering the influence of global inconsistency in multimodal semantics, our contrastive learning framework mitigates the semantic deviation of contrastive text-image objectives, which are constrained into a unified semantic space by a modal unified module. Thus, our MMICF can jointly mitigate local and global inconsistency for further maximally exploiting multimodal consistent semantics for fake news detection. The extensive experimental results show that the MMICF can improve the performance of multimodal fake news detection and provide a novel paradigm for mitigating multimodal inconsistency contrastive learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
刚刚
棋子未明猫完成签到 ,获得积分20
刚刚
Iurgnay完成签到,获得积分10
刚刚
dancha发布了新的文献求助10
1秒前
1秒前
2秒前
lzh发布了新的文献求助10
2秒前
怀玉发布了新的文献求助30
2秒前
zt发布了新的文献求助10
2秒前
玉米粥完成签到,获得积分10
2秒前
无极微光应助微凉采纳,获得20
3秒前
知知完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
4秒前
小用一阵完成签到,获得积分10
4秒前
5秒前
慕青应助甜甜的忆彤采纳,获得10
6秒前
6秒前
香蕉觅云应助tangzanwayne采纳,获得10
6秒前
Hug发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
xixi发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
天天向上发布了新的文献求助10
8秒前
MW完成签到,获得积分10
8秒前
ycxxyc完成签到,获得积分20
8秒前
myirwyo发布了新的文献求助10
9秒前
上官若男应助冷静怜珊采纳,获得10
9秒前
巴拉巴拉发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
10秒前
壮观青雪完成签到,获得积分10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719347
求助须知:如何正确求助?哪些是违规求助? 5256132
关于积分的说明 15288645
捐赠科研通 4869222
什么是DOI,文献DOI怎么找? 2614690
邀请新用户注册赠送积分活动 1564705
关于科研通互助平台的介绍 1521914