电解质
溶剂化
材料科学
电化学
阳极
二甲氧基乙烷
离子液体
阴极
溶剂
相(物质)
金属
丁二腈
电池(电)
电化学窗口
化学工程
无机化学
电极
离子电导率
物理化学
有机化学
热力学
化学
功率(物理)
物理
工程类
冶金
催化作用
作者
Hyunseok Moon,Gwan Yeong Jung,Jeong Yong Lee,Imanuel Kristanto,Sang Kyu Kwak,Sang‐Young Lee
标识
DOI:10.1002/adfm.202302543
摘要
Abstract Current state‐of‐the‐art Li batteries use single‐phase electrolytes; however, these electrolytes often encounter difficulty in simultaneously fulfilling the nonidentical electrochemical requirements of cathodes and anodes. Here, a class of immiscible binary liquid electrolyte (BLE) is designed by starving free solvent molecules. Based on their electrochemical stability window, 1,2‐dimethoxyethane (DME) and succinonitrile (SN) are selected as model solvents for Li‐metal anodes and LiNi 0.8 Co 0.1 Mn 0.1 (NCM811) cathodes, respectively. Li bis(fluorosulfonyl)imide (LiFSI), which promotes Li + solvation (i.e., reduces free solvents), enables the phase separation of the miscible solvent mixture (SN−DME), and an increase in its concentration strengthens the coordination of Li + −FSI − in the solvation sheath, thus yielding (anion‐derived) fluorine‐rich electrode–electrolyte interphases. The resulting BLE allows 4.4 V Li‐metal full cells to exhibit a stable capacity retention under a constrained cell condition (Li (20 µm, 4.1 mAh cm −2 )||NCM811 (3.8 mAh cm −2 ), N (negative)/P (positive) capacity ratio = 1.08), which exceed those of previously reported binary liquid electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI