Greek Key Inspired Fractal Metamaterials with Superior Stretchability for Tunable Wave Propagation

超材料 材料科学 分形 辅助 可伸缩电子设备 脆性 刚度 韧性 复合材料 光电子学 工程类 数码产品 数学分析 数学 电气工程
作者
Zhennan Zhang,Huan Jiang,Brett A. Bednarcyk,Yanyu Chen
出处
期刊:Advanced materials and technologies [Wiley]
卷期号:8 (21) 被引量:2
标识
DOI:10.1002/admt.202300981
摘要

Stretchable materials that can sustain a large deformation are in high demand, because they find broad applications ranging from stretchable energy storage devices to tunable noise and vibration devices. One main challenge is creating strain‐releasing mechanisms from inherently brittle materials. This work explores a new approach to designing stretchable metamaterials, using a "kerfing" pattern inspired by the ancient Greek Key configuration. The kerfing architecture allows for substantial in‐plane elongation. In‐plane tensile experiments show an ≈8‐times increase in stretchability when the kerfing width is enlarged four times. With higher‐order fractal patterns, the fractal lattice exhibits a stretchability of up to ≈520%, far beyond the inherent deformability of the brittle constituent. Moreover, this design also enables the tunability of various mechanical properties, including stiffness, strength, toughness, and Poisson's ratio. Ashby‐type plots are presented, revealing the relationships between stretchability and other mechanical properties to aid in the design and fabrication of advanced engineering materials. To demonstrate a vital application of the achieved stretchability, elastic wave propagation in the proposed kerfing metamaterials is studied. Simulations indicate that multiple broad phononic bandgaps arise in these structures as the fractal order increases. These bandgaps prove to be adjustable not only through the fractal lattice geometry but also by means of applied mechanical loading. This investigation highlights the potential of fractal‐based layouts as a promising avenue for designing cutting‐edge stretchable metamaterials with customizable mechanical properties and functionalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大黑完成签到 ,获得积分10
刚刚
852应助Hhh采纳,获得10
刚刚
珍珠红茶发布了新的文献求助10
1秒前
1秒前
2秒前
linda发布了新的文献求助30
2秒前
SciGPT应助黄静采纳,获得30
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
Oli发布了新的文献求助30
4秒前
在水一方应助foxuan采纳,获得10
5秒前
6秒前
夏小舟发布了新的文献求助10
7秒前
积极纲发布了新的文献求助10
7秒前
9秒前
晒太阳比赛冠军完成签到 ,获得积分10
9秒前
一一应助Liekkas采纳,获得200
9秒前
liuyi666发布了新的文献求助10
11秒前
12秒前
然来溪完成签到 ,获得积分10
12秒前
zyy0811完成签到,获得积分10
13秒前
14秒前
16秒前
16秒前
19秒前
19秒前
灵巧夏彤完成签到 ,获得积分10
20秒前
ding应助珍珠红茶采纳,获得10
20秒前
先吃一只羊完成签到 ,获得积分10
22秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
搜集达人应助姚裕采纳,获得10
25秒前
zhenyu0430完成签到,获得积分10
25秒前
26秒前
Hhh发布了新的文献求助10
26秒前
JUNLINGDENG完成签到 ,获得积分10
26秒前
晞晞完成签到,获得积分10
27秒前
27秒前
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407027
求助须知:如何正确求助?哪些是违规求助? 4524685
关于积分的说明 14099897
捐赠科研通 4438552
什么是DOI,文献DOI怎么找? 2436342
邀请新用户注册赠送积分活动 1428326
关于科研通互助平台的介绍 1406406