Greek Key Inspired Fractal Metamaterials with Superior Stretchability for Tunable Wave Propagation

超材料 材料科学 分形 辅助 可伸缩电子设备 脆性 刚度 韧性 复合材料 光电子学 工程类 数码产品 数学分析 数学 电气工程
作者
Zhennan Zhang,Huan Jiang,Brett A. Bednarcyk,Yanyu Chen
出处
期刊:Advanced materials and technologies [Wiley]
卷期号:8 (21) 被引量:2
标识
DOI:10.1002/admt.202300981
摘要

Stretchable materials that can sustain a large deformation are in high demand, because they find broad applications ranging from stretchable energy storage devices to tunable noise and vibration devices. One main challenge is creating strain‐releasing mechanisms from inherently brittle materials. This work explores a new approach to designing stretchable metamaterials, using a "kerfing" pattern inspired by the ancient Greek Key configuration. The kerfing architecture allows for substantial in‐plane elongation. In‐plane tensile experiments show an ≈8‐times increase in stretchability when the kerfing width is enlarged four times. With higher‐order fractal patterns, the fractal lattice exhibits a stretchability of up to ≈520%, far beyond the inherent deformability of the brittle constituent. Moreover, this design also enables the tunability of various mechanical properties, including stiffness, strength, toughness, and Poisson's ratio. Ashby‐type plots are presented, revealing the relationships between stretchability and other mechanical properties to aid in the design and fabrication of advanced engineering materials. To demonstrate a vital application of the achieved stretchability, elastic wave propagation in the proposed kerfing metamaterials is studied. Simulations indicate that multiple broad phononic bandgaps arise in these structures as the fractal order increases. These bandgaps prove to be adjustable not only through the fractal lattice geometry but also by means of applied mechanical loading. This investigation highlights the potential of fractal‐based layouts as a promising avenue for designing cutting‐edge stretchable metamaterials with customizable mechanical properties and functionalities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhonghang2024发布了新的文献求助30
1秒前
1秒前
胡图图发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
33完成签到,获得积分0
2秒前
3秒前
小鱼鱼Fish发布了新的文献求助20
3秒前
清爽幼枫发布了新的文献求助20
4秒前
糊涂的冰菱完成签到,获得积分10
4秒前
yu关注了科研通微信公众号
4秒前
科研通AI6应助侧耳倾听采纳,获得10
4秒前
liuaoo完成签到,获得积分10
4秒前
叶婧馨发布了新的文献求助10
5秒前
5秒前
xuelanghu完成签到,获得积分10
5秒前
silong发布了新的文献求助10
5秒前
6秒前
Lin完成签到,获得积分10
7秒前
Sepvvvvirtue完成签到 ,获得积分10
7秒前
7秒前
7秒前
小马甲应助托比昂首挺胸采纳,获得10
7秒前
FFFFF完成签到 ,获得积分0
7秒前
箫涵完成签到,获得积分10
8秒前
汉堡包应助皮卡丘2023采纳,获得10
9秒前
Lucas应助搬砖采纳,获得10
9秒前
坚强的曼雁完成签到,获得积分10
9秒前
ding应助头秃的SCY采纳,获得10
9秒前
陈末应助科研通管家采纳,获得10
9秒前
情怀应助科研通管家采纳,获得10
9秒前
9秒前
赵yy应助科研通管家采纳,获得10
9秒前
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
aaa发布了新的文献求助10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得30
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
扫描探针电化学 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5439468
求助须知:如何正确求助?哪些是违规求助? 4550592
关于积分的说明 14225410
捐赠科研通 4471688
什么是DOI,文献DOI怎么找? 2450447
邀请新用户注册赠送积分活动 1441280
关于科研通互助平台的介绍 1417883