亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the crop classification performance by unlabeled remote sensing data

计算机科学 人工智能 瓶颈 机器学习 多层感知器 模式识别(心理学) 监督学习 数据挖掘 人工神经网络 嵌入式系统
作者
Hengbin Wang,Zijing Ye,Yan Wang,Xueyi Liu,Xindan Zhang,Yuanyuan Zhao,Shaoming Li,Zhe Liu,Xiaodong Zhang
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:236: 121283-121283 被引量:3
标识
DOI:10.1016/j.eswa.2023.121283
摘要

Accurate and timely crop classification results play a crucial role in providing data support for agricultural policy-making and crop yield estimation. However, the current development of crop classification faces a bottleneck in improving classification performance due to limited labeled samples and saturated classification algorithms. In this study, we propose a novel method to improve crop classification performance by leveraging unlabeled remote sensing data (URSD). Importantly, our method does not necessitate a large number of labeled samples or significant modifications to the classification algorithm. Instead, it relies on a unique self-supervised training approach and a substantial amount of URSD. Specifically, we develop a self-supervised classification framework based on a Multilayer Perceptron (MLP) and introduce a self-supervised training approach that takes into account both temporal and spectral factors. Additionally, we construct a historical sample classification model based on crop growth knowledge, emphasizing the correlation of local time series. We evaluate the proposed method using four study areas in China. The analysis of pre-training data types reveals that our method not only improves the classification performance of current year samples but also demonstrates noticeable improvement in classifying historical samples. The classification method analysis demonstrates the ability of our proposed self-supervised learning training approach to accumulate more prior knowledge. Overall, these results highlight the advantages of our method in terms of classification efficiency and performance improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助柠檬采纳,获得10
3秒前
4秒前
13秒前
14秒前
柠檬发布了新的文献求助10
18秒前
20秒前
24秒前
柠檬完成签到,获得积分20
28秒前
Criminology34应助ceeray23采纳,获得20
46秒前
47秒前
xu应助ceeray23采纳,获得20
50秒前
null应助科研通管家采纳,获得10
53秒前
null应助科研通管家采纳,获得10
53秒前
null应助科研通管家采纳,获得10
53秒前
null应助科研通管家采纳,获得10
53秒前
null应助科研通管家采纳,获得10
53秒前
null应助科研通管家采纳,获得10
53秒前
浮游应助ceeray23采纳,获得20
53秒前
54秒前
nenoaowu发布了新的文献求助10
58秒前
icoo发布了新的文献求助10
1分钟前
852应助nenoaowu采纳,获得10
1分钟前
1分钟前
nenoaowu完成签到,获得积分10
1分钟前
1分钟前
icoo完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
肖肖发布了新的文献求助10
2分钟前
ceeray23发布了新的文献求助20
2分钟前
2分钟前
2分钟前
肖肖完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
null应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
null应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Bone Marrow Immunohistochemistry 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5628241
求助须知:如何正确求助?哪些是违规求助? 4716158
关于积分的说明 14963847
捐赠科研通 4785915
什么是DOI,文献DOI怎么找? 2555467
邀请新用户注册赠送积分活动 1516748
关于科研通互助平台的介绍 1477316