Improving the crop classification performance by unlabeled remote sensing data

计算机科学 人工智能 瓶颈 机器学习 多层感知器 模式识别(心理学) 监督学习 数据挖掘 人工神经网络 嵌入式系统
作者
Hengbin Wang,Zijing Ye,Yan Wang,Xueyi Liu,Xindan Zhang,Yuanyuan Zhao,Shaoming Li,Zhe Liu,Xiaodong Zhang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:236: 121283-121283 被引量:3
标识
DOI:10.1016/j.eswa.2023.121283
摘要

Accurate and timely crop classification results play a crucial role in providing data support for agricultural policy-making and crop yield estimation. However, the current development of crop classification faces a bottleneck in improving classification performance due to limited labeled samples and saturated classification algorithms. In this study, we propose a novel method to improve crop classification performance by leveraging unlabeled remote sensing data (URSD). Importantly, our method does not necessitate a large number of labeled samples or significant modifications to the classification algorithm. Instead, it relies on a unique self-supervised training approach and a substantial amount of URSD. Specifically, we develop a self-supervised classification framework based on a Multilayer Perceptron (MLP) and introduce a self-supervised training approach that takes into account both temporal and spectral factors. Additionally, we construct a historical sample classification model based on crop growth knowledge, emphasizing the correlation of local time series. We evaluate the proposed method using four study areas in China. The analysis of pre-training data types reveals that our method not only improves the classification performance of current year samples but also demonstrates noticeable improvement in classifying historical samples. The classification method analysis demonstrates the ability of our proposed self-supervised learning training approach to accumulate more prior knowledge. Overall, these results highlight the advantages of our method in terms of classification efficiency and performance improvement.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zorro3574完成签到,获得积分10
1秒前
Xdz完成签到 ,获得积分10
2秒前
忐忑的凌丝完成签到,获得积分10
2秒前
2秒前
个性的翠芙完成签到 ,获得积分10
2秒前
皮蛋瘦肉周完成签到,获得积分10
3秒前
3秒前
SYLH应助木木采纳,获得30
3秒前
ZJR发布了新的文献求助10
3秒前
goodsheep完成签到 ,获得积分10
3秒前
Dr_Zhang完成签到,获得积分10
4秒前
烟花应助科研通管家采纳,获得30
4秒前
852应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
Akim应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
4秒前
科目三应助科研通管家采纳,获得10
4秒前
白桃乌龙应助科研通管家采纳,获得10
5秒前
韩博完成签到,获得积分10
5秒前
赘婿应助科研通管家采纳,获得10
5秒前
5秒前
伍绮彤完成签到,获得积分10
5秒前
5秒前
雨寒发布了新的文献求助20
6秒前
weske发布了新的文献求助10
6秒前
8秒前
独特元蝶发布了新的文献求助10
10秒前
10秒前
Lucas应助陈陈采纳,获得10
11秒前
星辰发布了新的文献求助10
11秒前
12秒前
12秒前
小二郎应助愉快的雪巧采纳,获得10
13秒前
13秒前
15秒前
尹尹尹发布了新的文献求助10
15秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979515
求助须知:如何正确求助?哪些是违规求助? 3523465
关于积分的说明 11217759
捐赠科研通 3260973
什么是DOI,文献DOI怎么找? 1800315
邀请新用户注册赠送积分活动 879017
科研通“疑难数据库(出版商)”最低求助积分说明 807144