Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review

环境修复 过程(计算) 计算机科学 人工智能 地下水修复 机器学习 污染 生态学 生物 操作系统
作者
Jagadeesh Kumar Janga,Krishna R. Reddy,Raviteja Kvns
出处
期刊:Chemosphere [Elsevier]
卷期号:345: 140476-140476
标识
DOI:10.1016/j.chemosphere.2023.140476
摘要

The growing number of contaminated sites across the world pose a considerable threat to the environment and human health. Remediating such sites is a cumbersome process with the complexity originating from the need for extensive sampling and testing during site characterization. Selection and design of remediation technology is further complicated by the uncertainties surrounding contaminant attributes, concentration, as well as soil and groundwater properties, which influence the remediation efficiency. Additionally, challenges emerge in identifying contamination sources and monitoring the affected area. Often, these problems are overly simplified, and the data gathered is underutilized rendering the remediation process inefficient. The potential of artificial intelligence (AI), machine-learning (ML), and deep-learning (DL) to address these issues is noteworthy, as their emergence revolutionized the process of data management/analysis. Researchers across the world are increasingly leveraging AI/ML/DL to address remediation challenges. Current study aims to perform a comprehensive literature review on the integration of AI/ML/DL tools into contaminated site remediation. A brief introduction to various emerging and existing AI/ML/DL technologies is presented, followed by a comprehensive literature review. In essence, ML/DL based predictive models can facilitate a thorough understanding of contamination patterns, reducing the need for extensive soil and groundwater sampling. Additionally, AI/ML/DL algorithms can play a pivotal role in identifying optimal remediation strategies by analyzing historical data, simulating scenarios through surrogate models, parameter-optimization using nature inspired algorithms, and enhancing decision-making with AI-based tools. Overall, with supportive measures like open-data policies and data integration, AI/ML/DL possess the potential to revolutionize the practice of contaminated site remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
外向语山发布了新的文献求助10
1秒前
科研通AI2S应助甜美的芷采纳,获得10
2秒前
LEMONS发布了新的文献求助10
2秒前
复古红完成签到,获得积分10
4秒前
云瑾应助端木眼眼采纳,获得10
5秒前
bread完成签到,获得积分10
5秒前
5秒前
大个应助追寻紫安采纳,获得10
6秒前
山鱼人完成签到,获得积分10
7秒前
7秒前
7秒前
爆米花应助LEMONS采纳,获得10
8秒前
9秒前
英勇的寒蕾完成签到,获得积分10
10秒前
Yjh完成签到,获得积分10
10秒前
11秒前
123应助郁李采纳,获得20
11秒前
12秒前
CodeCraft应助心碎的西瓜采纳,获得10
12秒前
12秒前
sanben完成签到,获得积分10
14秒前
上官若男应助Yjh采纳,获得10
14秒前
bread发布了新的文献求助10
15秒前
子虚乌有完成签到,获得积分10
15秒前
橙子发布了新的文献求助10
15秒前
金金金发布了新的文献求助10
17秒前
lwh发布了新的文献求助10
18秒前
小白果果完成签到,获得积分10
21秒前
赘婿应助重要灵竹采纳,获得10
21秒前
李爱国应助露拉采纳,获得10
21秒前
22秒前
云也完成签到,获得积分10
23秒前
Flora完成签到,获得积分20
23秒前
小螺号完成签到 ,获得积分10
24秒前
酷波er应助外向语山采纳,获得10
25秒前
bkagyin应助金金金采纳,获得10
26秒前
斯文的可兰完成签到,获得积分10
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055638
求助须知:如何正确求助?哪些是违规求助? 2712308
关于积分的说明 7430663
捐赠科研通 2357227
什么是DOI,文献DOI怎么找? 1248640
科研通“疑难数据库(出版商)”最低求助积分说明 606766
版权声明 596144