Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review

环境修复 过程(计算) 计算机科学 人工智能 地下水修复 机器学习 污染 生态学 生物 操作系统
作者
Jagadeesh Kumar Janga,Krishna R. Reddy,K. V. N. S. Raviteja
出处
期刊:Chemosphere [Elsevier]
卷期号:345: 140476-140476 被引量:29
标识
DOI:10.1016/j.chemosphere.2023.140476
摘要

The growing number of contaminated sites across the world pose a considerable threat to the environment and human health. Remediating such sites is a cumbersome process with the complexity originating from the need for extensive sampling and testing during site characterization. Selection and design of remediation technology is further complicated by the uncertainties surrounding contaminant attributes, concentration, as well as soil and groundwater properties, which influence the remediation efficiency. Additionally, challenges emerge in identifying contamination sources and monitoring the affected area. Often, these problems are overly simplified, and the data gathered is underutilized rendering the remediation process inefficient. The potential of artificial intelligence (AI), machine-learning (ML), and deep-learning (DL) to address these issues is noteworthy, as their emergence revolutionized the process of data management/analysis. Researchers across the world are increasingly leveraging AI/ML/DL to address remediation challenges. Current study aims to perform a comprehensive literature review on the integration of AI/ML/DL tools into contaminated site remediation. A brief introduction to various emerging and existing AI/ML/DL technologies is presented, followed by a comprehensive literature review. In essence, ML/DL based predictive models can facilitate a thorough understanding of contamination patterns, reducing the need for extensive soil and groundwater sampling. Additionally, AI/ML/DL algorithms can play a pivotal role in identifying optimal remediation strategies by analyzing historical data, simulating scenarios through surrogate models, parameter-optimization using nature inspired algorithms, and enhancing decision-making with AI-based tools. Overall, with supportive measures like open-data policies and data integration, AI/ML/DL possess the potential to revolutionize the practice of contaminated site remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
本恩宁发布了新的文献求助10
1秒前
2秒前
wyy完成签到,获得积分10
2秒前
2秒前
hhyyrrr发布了新的文献求助10
2秒前
思想家发布了新的文献求助10
3秒前
现代傲柔发布了新的文献求助10
3秒前
3秒前
4秒前
LiM发布了新的文献求助10
4秒前
调皮老九完成签到,获得积分10
4秒前
5秒前
5秒前
小米超辣完成签到,获得积分20
6秒前
monere发布了新的文献求助10
6秒前
6秒前
conghuiqu发布了新的文献求助10
7秒前
失眠语海完成签到 ,获得积分10
7秒前
8秒前
8秒前
小二郎应助火星上的绿草采纳,获得10
8秒前
科目三应助本尼脸上褶子采纳,获得10
8秒前
8秒前
zzzzz发布了新的文献求助10
9秒前
why发布了新的文献求助10
9秒前
徐小赞完成签到,获得积分10
9秒前
Ecarc发布了新的文献求助10
9秒前
10秒前
10秒前
一汪发布了新的文献求助10
10秒前
djsj应助九月采纳,获得10
11秒前
共享精神应助huhuhufox采纳,获得10
11秒前
Orange应助半。。采纳,获得10
11秒前
赤澜苍焰发布了新的文献求助30
12秒前
科研通AI5应助goinggo采纳,获得10
12秒前
葡萄干应助mcnt采纳,获得30
12秒前
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483178
求助须知:如何正确求助?哪些是违规求助? 3072587
关于积分的说明 9127119
捐赠科研通 2764162
什么是DOI,文献DOI怎么找? 1516962
邀请新用户注册赠送积分活动 701873
科研通“疑难数据库(出版商)”最低求助积分说明 700737