Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review

环境修复 过程(计算) 计算机科学 人工智能 地下水修复 机器学习 污染 生态学 生物 操作系统
作者
Jagadeesh Kumar Janga,Krishna R. Reddy,K. V. N. S. Raviteja
出处
期刊:Chemosphere [Elsevier]
卷期号:345: 140476-140476 被引量:33
标识
DOI:10.1016/j.chemosphere.2023.140476
摘要

The growing number of contaminated sites across the world pose a considerable threat to the environment and human health. Remediating such sites is a cumbersome process with the complexity originating from the need for extensive sampling and testing during site characterization. Selection and design of remediation technology is further complicated by the uncertainties surrounding contaminant attributes, concentration, as well as soil and groundwater properties, which influence the remediation efficiency. Additionally, challenges emerge in identifying contamination sources and monitoring the affected area. Often, these problems are overly simplified, and the data gathered is underutilized rendering the remediation process inefficient. The potential of artificial intelligence (AI), machine-learning (ML), and deep-learning (DL) to address these issues is noteworthy, as their emergence revolutionized the process of data management/analysis. Researchers across the world are increasingly leveraging AI/ML/DL to address remediation challenges. Current study aims to perform a comprehensive literature review on the integration of AI/ML/DL tools into contaminated site remediation. A brief introduction to various emerging and existing AI/ML/DL technologies is presented, followed by a comprehensive literature review. In essence, ML/DL based predictive models can facilitate a thorough understanding of contamination patterns, reducing the need for extensive soil and groundwater sampling. Additionally, AI/ML/DL algorithms can play a pivotal role in identifying optimal remediation strategies by analyzing historical data, simulating scenarios through surrogate models, parameter-optimization using nature inspired algorithms, and enhancing decision-making with AI-based tools. Overall, with supportive measures like open-data policies and data integration, AI/ML/DL possess the potential to revolutionize the practice of contaminated site remediation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李嘉诚完成签到 ,获得积分10
1秒前
1秒前
丘比特应助ht采纳,获得10
1秒前
冷静妙海完成签到,获得积分10
1秒前
思源应助不喜采纳,获得10
1秒前
asdfzxcv应助无妄海采纳,获得10
3秒前
淡定初蓝完成签到,获得积分10
3秒前
4秒前
zwzh完成签到,获得积分10
4秒前
科研通AI6应助姜萌萌采纳,获得10
4秒前
5秒前
5秒前
yy发布了新的文献求助10
5秒前
6秒前
Rio完成签到,获得积分10
6秒前
6秒前
虚心柏柳完成签到,获得积分10
6秒前
6秒前
7秒前
须臾完成签到,获得积分10
7秒前
7秒前
7秒前
麦辣基米堡完成签到,获得积分20
8秒前
8秒前
8秒前
qiqiqi发布了新的文献求助10
9秒前
10秒前
是假的发布了新的文献求助10
10秒前
10秒前
赵丽红完成签到,获得积分10
10秒前
sunpacino完成签到,获得积分10
11秒前
xiongyuan完成签到,获得积分10
11秒前
Olivia发布了新的文献求助10
11秒前
夕荀发布了新的文献求助10
11秒前
11秒前
Jasper应助崔某采纳,获得10
12秒前
荷珠发布了新的文献求助10
12秒前
甜酒发布了新的文献求助30
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641981
求助须知:如何正确求助?哪些是违规求助? 4757709
关于积分的说明 15015741
捐赠科研通 4800432
什么是DOI,文献DOI怎么找? 2566041
邀请新用户注册赠送积分活动 1524182
关于科研通互助平台的介绍 1483798