Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review

环境修复 过程(计算) 计算机科学 人工智能 地下水修复 机器学习 污染 生态学 生物 操作系统
作者
Jagadeesh Kumar Janga,Krishna R. Reddy,K. V. N. S. Raviteja
出处
期刊:Chemosphere [Elsevier]
卷期号:345: 140476-140476 被引量:33
标识
DOI:10.1016/j.chemosphere.2023.140476
摘要

The growing number of contaminated sites across the world pose a considerable threat to the environment and human health. Remediating such sites is a cumbersome process with the complexity originating from the need for extensive sampling and testing during site characterization. Selection and design of remediation technology is further complicated by the uncertainties surrounding contaminant attributes, concentration, as well as soil and groundwater properties, which influence the remediation efficiency. Additionally, challenges emerge in identifying contamination sources and monitoring the affected area. Often, these problems are overly simplified, and the data gathered is underutilized rendering the remediation process inefficient. The potential of artificial intelligence (AI), machine-learning (ML), and deep-learning (DL) to address these issues is noteworthy, as their emergence revolutionized the process of data management/analysis. Researchers across the world are increasingly leveraging AI/ML/DL to address remediation challenges. Current study aims to perform a comprehensive literature review on the integration of AI/ML/DL tools into contaminated site remediation. A brief introduction to various emerging and existing AI/ML/DL technologies is presented, followed by a comprehensive literature review. In essence, ML/DL based predictive models can facilitate a thorough understanding of contamination patterns, reducing the need for extensive soil and groundwater sampling. Additionally, AI/ML/DL algorithms can play a pivotal role in identifying optimal remediation strategies by analyzing historical data, simulating scenarios through surrogate models, parameter-optimization using nature inspired algorithms, and enhancing decision-making with AI-based tools. Overall, with supportive measures like open-data policies and data integration, AI/ML/DL possess the potential to revolutionize the practice of contaminated site remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助七七七七七采纳,获得10
2秒前
3秒前
4秒前
2799发布了新的文献求助10
4秒前
打工仔完成签到 ,获得积分10
6秒前
6秒前
专注玩手机的可乐完成签到 ,获得积分10
6秒前
挽歌关注了科研通微信公众号
7秒前
火星上安筠完成签到,获得积分10
7秒前
喵喵完成签到,获得积分10
8秒前
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
完美世界应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
Anima应助科研通管家采纳,获得10
9秒前
Anima应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
Ava应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
10秒前
12秒前
13秒前
惟珦完成签到,获得积分10
14秒前
wuliwang完成签到,获得积分10
15秒前
达达发布了新的文献求助30
15秒前
17秒前
gorgeous完成签到,获得积分10
17秒前
称心的语梦完成签到,获得积分10
18秒前
18秒前
18秒前
清风徐来发布了新的文献求助10
19秒前
cmdan完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5309595
求助须知:如何正确求助?哪些是违规求助? 4454149
关于积分的说明 13859390
捐赠科研通 4342109
什么是DOI,文献DOI怎么找? 2384337
邀请新用户注册赠送积分活动 1378821
关于科研通互助平台的介绍 1346965