Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review

环境修复 过程(计算) 计算机科学 人工智能 地下水修复 机器学习 污染 生态学 生物 操作系统
作者
Jagadeesh Kumar Janga,Krishna R. Reddy,K. V. N. S. Raviteja
出处
期刊:Chemosphere [Elsevier BV]
卷期号:345: 140476-140476 被引量:33
标识
DOI:10.1016/j.chemosphere.2023.140476
摘要

The growing number of contaminated sites across the world pose a considerable threat to the environment and human health. Remediating such sites is a cumbersome process with the complexity originating from the need for extensive sampling and testing during site characterization. Selection and design of remediation technology is further complicated by the uncertainties surrounding contaminant attributes, concentration, as well as soil and groundwater properties, which influence the remediation efficiency. Additionally, challenges emerge in identifying contamination sources and monitoring the affected area. Often, these problems are overly simplified, and the data gathered is underutilized rendering the remediation process inefficient. The potential of artificial intelligence (AI), machine-learning (ML), and deep-learning (DL) to address these issues is noteworthy, as their emergence revolutionized the process of data management/analysis. Researchers across the world are increasingly leveraging AI/ML/DL to address remediation challenges. Current study aims to perform a comprehensive literature review on the integration of AI/ML/DL tools into contaminated site remediation. A brief introduction to various emerging and existing AI/ML/DL technologies is presented, followed by a comprehensive literature review. In essence, ML/DL based predictive models can facilitate a thorough understanding of contamination patterns, reducing the need for extensive soil and groundwater sampling. Additionally, AI/ML/DL algorithms can play a pivotal role in identifying optimal remediation strategies by analyzing historical data, simulating scenarios through surrogate models, parameter-optimization using nature inspired algorithms, and enhancing decision-making with AI-based tools. Overall, with supportive measures like open-data policies and data integration, AI/ML/DL possess the potential to revolutionize the practice of contaminated site remediation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FangyingTang完成签到 ,获得积分10
刚刚
刚刚
刚刚
文章快快来完成签到,获得积分10
1秒前
Sherwin完成签到,获得积分10
1秒前
李健应助尊敬吐司采纳,获得10
1秒前
snnnn发布了新的文献求助10
1秒前
大模型应助Itsccy采纳,获得10
1秒前
1秒前
付大威完成签到,获得积分10
2秒前
许子健发布了新的文献求助10
2秒前
lx发布了新的文献求助10
2秒前
科研小白完成签到,获得积分10
2秒前
想毕业发布了新的文献求助20
2秒前
八格牙路发布了新的文献求助10
2秒前
lan完成签到,获得积分10
3秒前
牧之关注了科研通微信公众号
3秒前
汝桢完成签到,获得积分10
4秒前
4秒前
上上签完成签到,获得积分10
5秒前
5秒前
搜集达人应助感动又晴采纳,获得10
5秒前
清脆惜寒应助倚歌采纳,获得10
6秒前
june发布了新的文献求助10
6秒前
芬芬发布了新的文献求助10
6秒前
韧战发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
脑洞疼应助亓大大采纳,获得10
9秒前
大个应助snnnn采纳,获得10
10秒前
灰烬使者完成签到,获得积分20
11秒前
八格牙路完成签到,获得积分10
11秒前
11秒前
、、、发布了新的文献求助10
11秒前
岩追研发布了新的文献求助10
12秒前
跃May发布了新的文献求助10
13秒前
13秒前
fanny发布了新的文献求助30
13秒前
13秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646