已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating artificial intelligence, machine learning, and deep learning approaches into remediation of contaminated sites: A review

环境修复 过程(计算) 计算机科学 人工智能 地下水修复 机器学习 污染 生态学 生物 操作系统
作者
Jagadeesh Kumar Janga,Krishna R. Reddy,K. V. N. S. Raviteja
出处
期刊:Chemosphere [Elsevier]
卷期号:345: 140476-140476 被引量:33
标识
DOI:10.1016/j.chemosphere.2023.140476
摘要

The growing number of contaminated sites across the world pose a considerable threat to the environment and human health. Remediating such sites is a cumbersome process with the complexity originating from the need for extensive sampling and testing during site characterization. Selection and design of remediation technology is further complicated by the uncertainties surrounding contaminant attributes, concentration, as well as soil and groundwater properties, which influence the remediation efficiency. Additionally, challenges emerge in identifying contamination sources and monitoring the affected area. Often, these problems are overly simplified, and the data gathered is underutilized rendering the remediation process inefficient. The potential of artificial intelligence (AI), machine-learning (ML), and deep-learning (DL) to address these issues is noteworthy, as their emergence revolutionized the process of data management/analysis. Researchers across the world are increasingly leveraging AI/ML/DL to address remediation challenges. Current study aims to perform a comprehensive literature review on the integration of AI/ML/DL tools into contaminated site remediation. A brief introduction to various emerging and existing AI/ML/DL technologies is presented, followed by a comprehensive literature review. In essence, ML/DL based predictive models can facilitate a thorough understanding of contamination patterns, reducing the need for extensive soil and groundwater sampling. Additionally, AI/ML/DL algorithms can play a pivotal role in identifying optimal remediation strategies by analyzing historical data, simulating scenarios through surrogate models, parameter-optimization using nature inspired algorithms, and enhancing decision-making with AI-based tools. Overall, with supportive measures like open-data policies and data integration, AI/ML/DL possess the potential to revolutionize the practice of contaminated site remediation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
孔德阳完成签到,获得积分10
2秒前
gao完成签到,获得积分10
6秒前
打打应助cjz123采纳,获得10
6秒前
陈一会完成签到 ,获得积分10
10秒前
13秒前
斯文败类应助123采纳,获得10
15秒前
小小科研牛马完成签到,获得积分10
15秒前
七慕凉完成签到,获得积分0
16秒前
Beginner完成签到,获得积分10
18秒前
和谐天川完成签到 ,获得积分10
21秒前
小青椒应助现代的唯雪采纳,获得50
22秒前
立冬完成签到,获得积分10
22秒前
25秒前
30秒前
巧克力发布了新的文献求助10
32秒前
艺术家发布了新的文献求助10
34秒前
petrichor完成签到,获得积分10
36秒前
温馨家园完成签到 ,获得积分10
36秒前
37秒前
38秒前
哒布6完成签到 ,获得积分10
39秒前
41秒前
鱼鱼鱼完成签到,获得积分10
41秒前
42秒前
贪玩的幻姬完成签到 ,获得积分10
42秒前
42秒前
42秒前
Anoxra完成签到 ,获得积分10
42秒前
bilibili发布了新的文献求助10
43秒前
充电宝应助无限青柏采纳,获得10
47秒前
keke发布了新的文献求助10
47秒前
guo发布了新的文献求助10
48秒前
sunny33发布了新的文献求助10
49秒前
沐啊完成签到 ,获得积分10
49秒前
50秒前
51秒前
51秒前
卷卷完成签到 ,获得积分10
51秒前
小雨完成签到 ,获得积分10
52秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542960
求助须知:如何正确求助?哪些是违规求助? 4629072
关于积分的说明 14610747
捐赠科研通 4570366
什么是DOI,文献DOI怎么找? 2505686
邀请新用户注册赠送积分活动 1483021
关于科研通互助平台的介绍 1454336