Bayesian variational transformer: A generalizable model for rotating machinery fault diagnosis

过度拟合 概化理论 变压器 贝叶斯概率 人工智能 一般化 计算机科学 机器学习 惯性 模式识别(心理学) 工程类 数学 人工神经网络 统计 电压 电气工程 数学分析 物理 经典力学
作者
Yiming Xiao,Haidong Shao,Jie Wang,Shen Yan,Bin Liu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier BV]
卷期号:207: 110936-110936 被引量:101
标识
DOI:10.1016/j.ymssp.2023.110936
摘要

Transformer has been widely applied in the research of rotating machinery fault diagnosis due to its ability to explore the internal correlation of vibration signals. However, challenges still exist despite the countless efforts. Generally, Transformer is more prone to overfitting than CNN on small-scale datasets. In practical engineering, collecting sufficient fault samples for training is difficult, resulting in poor generalization of Transformer. In addition, the measured signals are often accompanied with severe noise, further reducing the generalization performance of the model. Meanwhile, the collected signals often follow different distributions due to the changing operating conditions, which places higher demands on the generalizability of Transformer. This paper proposes a Bayesian variational Transformer (Bayesformer) to cope with the abovementioned problems. In Bayesformer, all the attention weights are treated as latent random variables, rather than determined values as the previous studies. This allows to train an ensemble of networks, instead of a single one, enhancing the generalizability of the model. Three experimental studies are conducted to illustrate the developed model and superior diagnostic performance is showed throughout the experiments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖完成签到 ,获得积分10
1秒前
3秒前
在水一方应助XFaning采纳,获得10
5秒前
6秒前
6秒前
好好科研完成签到,获得积分10
7秒前
8秒前
8秒前
Akim应助纯真冰蝶采纳,获得10
9秒前
繁荣的康乃馨应助小高采纳,获得10
10秒前
可爱的函函应助小高采纳,获得30
10秒前
11秒前
11秒前
ddddd发布了新的文献求助10
12秒前
打打应助梓树采纳,获得10
13秒前
14秒前
宝玉完成签到 ,获得积分10
14秒前
心灵美的宛丝完成签到,获得积分10
17秒前
17秒前
21秒前
22秒前
wow发布了新的文献求助10
23秒前
脑洞疼应助jyy采纳,获得200
23秒前
25秒前
26秒前
诚心的初露完成签到,获得积分10
26秒前
26秒前
LIYI完成签到,获得积分10
29秒前
秋半雪发布了新的文献求助10
29秒前
kk完成签到,获得积分10
30秒前
31秒前
zhhh发布了新的文献求助10
32秒前
LIYI发布了新的文献求助10
32秒前
33秒前
钮祜禄废废完成签到,获得积分10
34秒前
皮崇知发布了新的文献求助10
34秒前
35秒前
36秒前
ryan发布了新的文献求助10
36秒前
Eisbecher发布了新的文献求助10
37秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662