亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning and its extensive appositeness in human activity recognition: A survey

计算机科学 机器学习 人工智能 学习迁移 背景(考古学) 引用 过程(计算) 间隙 领域(数学分析) 数据科学 万维网 医学 古生物学 数学分析 数学 泌尿科 生物 操作系统
作者
Abhisek Ray,Maheshkumar H. Kolekar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122538-122538 被引量:3
标识
DOI:10.1016/j.eswa.2023.122538
摘要

In this competitive world, the supervision and monitoring of human resources are primary and necessary tasks to drive context-aware applications. Advancement in sensor and computational technology has cleared the path for automatic human activity recognition (HAR). First, machine learning and later deep learning play a cardinal role in this automation process. Classical machine learning approaches follow the hypothesis that the training, validation, and testing data belong to the same domain, where data distribution characteristics and the input feature space are alike. However, during real-time HAR, the above hypothesis does not always true. Transfer learning helps in an extended manner to transfer the required knowledge among heterogeneous data of various activities. To display the hierarchical advancements in transfer learning-enhanced HAR, we have shortlisted the 150 most influential works and articles from 2014–2021 based on their contribution, citation score, and year of publication. These selected articles are collected from IEEE Xplore, Web of Science, and Google Scholar digital libraries. We have also analyzed the statistical research interest related to this topic to substantiate the significance of our survey. We have found a significant growth of 10% in research publications related to this domain every year. Our survey provides a unique classification model to delineate the diversity in transfer learning-based HAR. This survey delves into the world of HAR datasets, exploring their types, specifications, advantages, and limitations. We also examine the steps involved in HAR, including the various transfer learning techniques and performance metrics, as well as the computational complexity associated with these methods. Additionally, we identify the challenges and gaps in HAR related to transfer learning and provide insights into future directions for researchers in this field. Based on the survey findings, researchers prefer the inductive transfer method, feature learning transfer mode, and cross-action transfer domain more over others due to their superior performance, with respective popularity scores of 55%, 40.8%, and 50.2%. This review aims to equip readers with a comprehensive understanding of HAR and transfer learning mechanisms, while also highlighting areas that require further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
诚心无声关注了科研通微信公众号
15秒前
量子星尘发布了新的文献求助10
17秒前
53秒前
55秒前
56秒前
科研通AI2S应助淡定无颜采纳,获得10
58秒前
1分钟前
凉白开发布了新的文献求助10
1分钟前
徐矜发布了新的文献求助10
1分钟前
正直水池完成签到 ,获得积分10
1分钟前
徐矜完成签到,获得积分10
1分钟前
1分钟前
迷迭香完成签到,获得积分10
1分钟前
1分钟前
迷迭香发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助20
1分钟前
李爱国应助迷迭香采纳,获得10
1分钟前
1分钟前
kaio_escolar完成签到,获得积分10
1分钟前
1分钟前
刘刘完成签到 ,获得积分10
1分钟前
Owen应助冷静的傲易采纳,获得30
2分钟前
2分钟前
2分钟前
小狗发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
HaoHao04发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
英喆完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
6分钟前
量子星尘发布了新的文献求助30
6分钟前
正直箴完成签到,获得积分10
6分钟前
正直箴发布了新的文献求助10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960135
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128683
捐赠科研通 3238299
什么是DOI,文献DOI怎么找? 1789684
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069