亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning and its extensive appositeness in human activity recognition: A survey

计算机科学 机器学习 人工智能 学习迁移 背景(考古学) 引用 过程(计算) 间隙 领域(数学分析) 数据科学 万维网 医学 古生物学 数学分析 数学 泌尿科 生物 操作系统
作者
Abhisek Ray,Maheshkumar H. Kolekar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122538-122538 被引量:3
标识
DOI:10.1016/j.eswa.2023.122538
摘要

In this competitive world, the supervision and monitoring of human resources are primary and necessary tasks to drive context-aware applications. Advancement in sensor and computational technology has cleared the path for automatic human activity recognition (HAR). First, machine learning and later deep learning play a cardinal role in this automation process. Classical machine learning approaches follow the hypothesis that the training, validation, and testing data belong to the same domain, where data distribution characteristics and the input feature space are alike. However, during real-time HAR, the above hypothesis does not always true. Transfer learning helps in an extended manner to transfer the required knowledge among heterogeneous data of various activities. To display the hierarchical advancements in transfer learning-enhanced HAR, we have shortlisted the 150 most influential works and articles from 2014–2021 based on their contribution, citation score, and year of publication. These selected articles are collected from IEEE Xplore, Web of Science, and Google Scholar digital libraries. We have also analyzed the statistical research interest related to this topic to substantiate the significance of our survey. We have found a significant growth of 10% in research publications related to this domain every year. Our survey provides a unique classification model to delineate the diversity in transfer learning-based HAR. This survey delves into the world of HAR datasets, exploring their types, specifications, advantages, and limitations. We also examine the steps involved in HAR, including the various transfer learning techniques and performance metrics, as well as the computational complexity associated with these methods. Additionally, we identify the challenges and gaps in HAR related to transfer learning and provide insights into future directions for researchers in this field. Based on the survey findings, researchers prefer the inductive transfer method, feature learning transfer mode, and cross-action transfer domain more over others due to their superior performance, with respective popularity scores of 55%, 40.8%, and 50.2%. This review aims to equip readers with a comprehensive understanding of HAR and transfer learning mechanisms, while also highlighting areas that require further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
医学生完成签到 ,获得积分10
21秒前
NexusExplorer应助文艺的寻芹采纳,获得10
41秒前
49秒前
等待蚂蚁发布了新的文献求助10
54秒前
1分钟前
开心每一天完成签到 ,获得积分10
2分钟前
碳土不凡完成签到 ,获得积分10
2分钟前
2分钟前
FashionBoy应助小小娜采纳,获得10
2分钟前
2分钟前
小小娜发布了新的文献求助10
2分钟前
小小娜完成签到,获得积分10
3分钟前
科研通AI5应助002采纳,获得10
3分钟前
3分钟前
002发布了新的文献求助10
3分钟前
3分钟前
3分钟前
科研通AI5应助科研通管家采纳,获得30
3分钟前
3分钟前
哈哈发布了新的文献求助10
3分钟前
何何发布了新的文献求助10
4分钟前
CipherSage应助哈哈采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
飞快的孱发布了新的文献求助10
4分钟前
4分钟前
Nicole完成签到,获得积分20
4分钟前
Nicole发布了新的文献求助10
4分钟前
花陵完成签到 ,获得积分10
4分钟前
胖胖猪发布了新的文献求助10
5分钟前
5分钟前
飞快的孱发布了新的文献求助10
5分钟前
5分钟前
小二郎应助幽默安珊采纳,获得10
5分钟前
无名发布了新的文献求助10
5分钟前
5分钟前
6分钟前
魁梧的鲂发布了新的文献求助10
6分钟前
幽默安珊发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626119
求助须知:如何正确求助?哪些是违规求助? 4025136
关于积分的说明 12458423
捐赠科研通 3710373
什么是DOI,文献DOI怎么找? 2046578
邀请新用户注册赠送积分活动 1078526
科研通“疑难数据库(出版商)”最低求助积分说明 960987