Transfer learning and its extensive appositeness in human activity recognition: A survey

计算机科学 机器学习 人工智能 学习迁移 背景(考古学) 引用 过程(计算) 间隙 领域(数学分析) 数据科学 万维网 数学分析 泌尿科 操作系统 古生物学 生物 医学 数学
作者
Abhisek Ray,Maheshkumar H. Kolekar
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:240: 122538-122538 被引量:3
标识
DOI:10.1016/j.eswa.2023.122538
摘要

In this competitive world, the supervision and monitoring of human resources are primary and necessary tasks to drive context-aware applications. Advancement in sensor and computational technology has cleared the path for automatic human activity recognition (HAR). First, machine learning and later deep learning play a cardinal role in this automation process. Classical machine learning approaches follow the hypothesis that the training, validation, and testing data belong to the same domain, where data distribution characteristics and the input feature space are alike. However, during real-time HAR, the above hypothesis does not always true. Transfer learning helps in an extended manner to transfer the required knowledge among heterogeneous data of various activities. To display the hierarchical advancements in transfer learning-enhanced HAR, we have shortlisted the 150 most influential works and articles from 2014–2021 based on their contribution, citation score, and year of publication. These selected articles are collected from IEEE Xplore, Web of Science, and Google Scholar digital libraries. We have also analyzed the statistical research interest related to this topic to substantiate the significance of our survey. We have found a significant growth of 10% in research publications related to this domain every year. Our survey provides a unique classification model to delineate the diversity in transfer learning-based HAR. This survey delves into the world of HAR datasets, exploring their types, specifications, advantages, and limitations. We also examine the steps involved in HAR, including the various transfer learning techniques and performance metrics, as well as the computational complexity associated with these methods. Additionally, we identify the challenges and gaps in HAR related to transfer learning and provide insights into future directions for researchers in this field. Based on the survey findings, researchers prefer the inductive transfer method, feature learning transfer mode, and cross-action transfer domain more over others due to their superior performance, with respective popularity scores of 55%, 40.8%, and 50.2%. This review aims to equip readers with a comprehensive understanding of HAR and transfer learning mechanisms, while also highlighting areas that require further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
欧皇发布了新的文献求助30
刚刚
1秒前
yyuliaaaa完成签到,获得积分20
1秒前
高大楼房发布了新的文献求助30
1秒前
薛wen晶完成签到 ,获得积分10
1秒前
VDC应助嘚嘚采纳,获得30
2秒前
2秒前
善学以致用应助jscr采纳,获得10
4秒前
kai chen完成签到 ,获得积分0
6秒前
6秒前
8秒前
yyuliaaaa发布了新的文献求助30
8秒前
10秒前
12秒前
顽固分子完成签到 ,获得积分10
12秒前
14秒前
17秒前
18秒前
Yifann完成签到,获得积分10
20秒前
wsdsd发布了新的文献求助10
21秒前
jscr发布了新的文献求助10
22秒前
尹博士发布了新的文献求助10
23秒前
费慕青完成签到,获得积分10
25秒前
娜娜完成签到 ,获得积分10
26秒前
酷波er应助Drew11采纳,获得10
27秒前
西关以西应助尹博士采纳,获得10
28秒前
韦老虎发布了新的文献求助10
29秒前
29秒前
酷波er应助研友_enPl9n采纳,获得30
31秒前
serayu123完成签到,获得积分10
32秒前
Felix发布了新的文献求助30
32秒前
33秒前
叶绿体机智完成签到,获得积分10
34秒前
贪玩黑米应助摸电门的猫采纳,获得10
36秒前
36秒前
蛋炒饭i发布了新的文献求助10
36秒前
37秒前
青衣北风发布了新的文献求助10
39秒前
CatherineRR完成签到 ,获得积分10
40秒前
冷静凌旋完成签到,获得积分10
40秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464340
求助须知:如何正确求助?哪些是违规求助? 3057669
关于积分的说明 9058016
捐赠科研通 2747686
什么是DOI,文献DOI怎么找? 1507556
科研通“疑难数据库(出版商)”最低求助积分说明 696564
邀请新用户注册赠送积分活动 696117