亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Transfer learning and its extensive appositeness in human activity recognition: A survey

计算机科学 机器学习 人工智能 学习迁移 背景(考古学) 引用 过程(计算) 间隙 领域(数学分析) 数据科学 万维网 医学 古生物学 数学分析 数学 泌尿科 生物 操作系统
作者
Abhisek Ray,Maheshkumar H. Kolekar
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:240: 122538-122538 被引量:3
标识
DOI:10.1016/j.eswa.2023.122538
摘要

In this competitive world, the supervision and monitoring of human resources are primary and necessary tasks to drive context-aware applications. Advancement in sensor and computational technology has cleared the path for automatic human activity recognition (HAR). First, machine learning and later deep learning play a cardinal role in this automation process. Classical machine learning approaches follow the hypothesis that the training, validation, and testing data belong to the same domain, where data distribution characteristics and the input feature space are alike. However, during real-time HAR, the above hypothesis does not always true. Transfer learning helps in an extended manner to transfer the required knowledge among heterogeneous data of various activities. To display the hierarchical advancements in transfer learning-enhanced HAR, we have shortlisted the 150 most influential works and articles from 2014–2021 based on their contribution, citation score, and year of publication. These selected articles are collected from IEEE Xplore, Web of Science, and Google Scholar digital libraries. We have also analyzed the statistical research interest related to this topic to substantiate the significance of our survey. We have found a significant growth of 10% in research publications related to this domain every year. Our survey provides a unique classification model to delineate the diversity in transfer learning-based HAR. This survey delves into the world of HAR datasets, exploring their types, specifications, advantages, and limitations. We also examine the steps involved in HAR, including the various transfer learning techniques and performance metrics, as well as the computational complexity associated with these methods. Additionally, we identify the challenges and gaps in HAR related to transfer learning and provide insights into future directions for researchers in this field. Based on the survey findings, researchers prefer the inductive transfer method, feature learning transfer mode, and cross-action transfer domain more over others due to their superior performance, with respective popularity scores of 55%, 40.8%, and 50.2%. This review aims to equip readers with a comprehensive understanding of HAR and transfer learning mechanisms, while also highlighting areas that require further research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助温水采纳,获得10
刚刚
3秒前
4秒前
pearson完成签到,获得积分10
5秒前
龚幻梦发布了新的文献求助10
8秒前
汉堡包应助徐志豪采纳,获得10
8秒前
阿乌大王完成签到,获得积分10
11秒前
浮游应助Lawliet采纳,获得10
15秒前
16秒前
19秒前
shusen完成签到,获得积分10
19秒前
科研通AI5应助玉洁采纳,获得10
19秒前
20秒前
21秒前
22秒前
芒果完成签到 ,获得积分10
23秒前
terryok发布了新的文献求助10
27秒前
隐形曼青应助zxh采纳,获得10
30秒前
思源应助暴躁的芷巧采纳,获得10
36秒前
37秒前
44秒前
51秒前
火星上的听云完成签到,获得积分10
51秒前
liaoliao完成签到 ,获得积分10
55秒前
Alav0314完成签到,获得积分10
56秒前
竹伪发布了新的文献求助10
57秒前
乐正亦寒完成签到 ,获得积分10
1分钟前
科研小赵发布了新的文献求助10
1分钟前
yao发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
王硕小傻狗完成签到,获得积分10
1分钟前
MinQi发布了新的文献求助10
1分钟前
斯文败类应助brg1小王子采纳,获得20
1分钟前
科研小赵完成签到,获得积分10
1分钟前
MinQi完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5076910
求助须知:如何正确求助?哪些是违规求助? 4296247
关于积分的说明 13386652
捐赠科研通 4118494
什么是DOI,文献DOI怎么找? 2255341
邀请新用户注册赠送积分活动 1259818
关于科研通互助平台的介绍 1192904