MCGLN: A multimodal ConvLSTM-GAN framework for lightning nowcasting utilizing multi-source spatiotemporal data

临近预报 计算机科学 雷电探测 闪电(连接器) 特征(语言学) 概率逻辑 机器学习 人工智能 深度学习 数据挖掘 雷雨 气象学 功率(物理) 物理 量子力学 语言学 哲学
作者
Mingyue Lu,Chuanwei Jin,Manzhu Yu,Qian Zhang,Hui Liu,Zhiyu Huang,Tongtong Dong
出处
期刊:Atmospheric Research [Elsevier]
卷期号:297: 107093-107093 被引量:8
标识
DOI:10.1016/j.atmosres.2023.107093
摘要

Lightning phenomena can instigate a cascade of calamities, encompassing fires, electrical infrastructure damage, and risks to human safety. Deep-learning-based lightning nowcasting models have demonstrated significant effectiveness in disaster prevention and mitigation. However, existing studies often neglect the impacts of surface features on lightning activities, and conventional lightning prediction techniques based on convolutional and recurrent networks face challenges such as the loss of feature information. Addressing these issues, this paper presents a novel model for lightning nowcasting, the Multimodal ConvLSTM-GAN for Lightning Nowcasting (MCGLN). This model integrates a Generative Adversarial Network (GAN) with a Convolutional Long Short-Term Memory network (ConvLSTM), utilizing multi-source data as inputs. It incorporates a spatiotemporal encoder-forecaster framework within the Generator to improve the capture of multidimensional spatiotemporal feature information, thus boosting predictive accuracy. MCGLN offers probabilistic prediction results, allowing users to customize warning thresholds following their specific tolerance for false and missed alarms. The performance of the MCGLN model is evaluated through empirical analysis, utilizing real lightning datasets sourced from Zhejiang and surrounding areas. Experimental results demonstrate that: (a) The MCGLN model outperforms existing methods in terms of detection capability and overall performance, showing significant improvements in the modeling process. (b) Increasing the number of data sources improves detection capabilities, reduces the probability of false alarms, and boosts the model performance. (c) The use of radar data enhances the recognition of high-probability lightning occurrences, and the inclusion of surface feature data increases the capture of terrestrial lightning genesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助遁一采纳,获得10
1秒前
dongxia1314完成签到,获得积分10
2秒前
科研通AI6.1应助自行采纳,获得10
3秒前
3秒前
4秒前
CodeCraft应助王w采纳,获得10
5秒前
优美紫槐应助buta采纳,获得10
5秒前
bkagyin应助jfz采纳,获得10
5秒前
6秒前
8秒前
领导范儿应助宇文听南采纳,获得10
8秒前
8秒前
8秒前
我是老大应助或无情采纳,获得10
9秒前
科研通AI6.1应助段dwh采纳,获得10
9秒前
wanci应助草莓猫猫虫采纳,获得10
9秒前
语恒发布了新的文献求助10
10秒前
11秒前
12秒前
12秒前
12秒前
科研通AI6.1应助Tempo采纳,获得10
12秒前
LQ发布了新的文献求助10
14秒前
txco完成签到,获得积分10
14秒前
fryeia完成签到,获得积分10
14秒前
火火发布了新的文献求助10
15秒前
15秒前
Lumos完成签到,获得积分10
15秒前
Fff完成签到,获得积分20
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
Lmmhh完成签到 ,获得积分10
18秒前
可爱的函函应助洁净从梦采纳,获得100
18秒前
19秒前
亓大大发布了新的文献求助10
19秒前
csd完成签到 ,获得积分10
20秒前
20秒前
21秒前
22秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743528
求助须知:如何正确求助?哪些是违规求助? 5414569
关于积分的说明 15347814
捐赠科研通 4884209
什么是DOI,文献DOI怎么找? 2625665
邀请新用户注册赠送积分活动 1574515
关于科研通互助平台的介绍 1531418