MCGLN: A multimodal ConvLSTM-GAN framework for lightning nowcasting utilizing multi-source spatiotemporal data

临近预报 计算机科学 雷电探测 闪电(连接器) 特征(语言学) 概率逻辑 机器学习 人工智能 深度学习 数据挖掘 雷雨 气象学 功率(物理) 物理 哲学 量子力学 语言学
作者
Mingyue Lu,Chuanwei Jin,Manzhu Yu,Qian Zhang,Hui Liu,Zhiyu Huang,Tongtong Dong
出处
期刊:Atmospheric Research [Elsevier]
卷期号:297: 107093-107093 被引量:8
标识
DOI:10.1016/j.atmosres.2023.107093
摘要

Lightning phenomena can instigate a cascade of calamities, encompassing fires, electrical infrastructure damage, and risks to human safety. Deep-learning-based lightning nowcasting models have demonstrated significant effectiveness in disaster prevention and mitigation. However, existing studies often neglect the impacts of surface features on lightning activities, and conventional lightning prediction techniques based on convolutional and recurrent networks face challenges such as the loss of feature information. Addressing these issues, this paper presents a novel model for lightning nowcasting, the Multimodal ConvLSTM-GAN for Lightning Nowcasting (MCGLN). This model integrates a Generative Adversarial Network (GAN) with a Convolutional Long Short-Term Memory network (ConvLSTM), utilizing multi-source data as inputs. It incorporates a spatiotemporal encoder-forecaster framework within the Generator to improve the capture of multidimensional spatiotemporal feature information, thus boosting predictive accuracy. MCGLN offers probabilistic prediction results, allowing users to customize warning thresholds following their specific tolerance for false and missed alarms. The performance of the MCGLN model is evaluated through empirical analysis, utilizing real lightning datasets sourced from Zhejiang and surrounding areas. Experimental results demonstrate that: (a) The MCGLN model outperforms existing methods in terms of detection capability and overall performance, showing significant improvements in the modeling process. (b) Increasing the number of data sources improves detection capabilities, reduces the probability of false alarms, and boosts the model performance. (c) The use of radar data enhances the recognition of high-probability lightning occurrences, and the inclusion of surface feature data increases the capture of terrestrial lightning genesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shuqi完成签到 ,获得积分10
2秒前
2秒前
2秒前
甜甜友容完成签到,获得积分10
3秒前
斯文败类应助a成采纳,获得10
6秒前
王道远完成签到,获得积分10
6秒前
lina完成签到 ,获得积分10
8秒前
9秒前
cc66发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
虚拟的皮卡丘完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
14秒前
bow完成签到 ,获得积分10
14秒前
18秒前
优雅的WAN完成签到 ,获得积分10
19秒前
所所应助cc66采纳,获得10
19秒前
LQ完成签到,获得积分10
20秒前
hui完成签到,获得积分10
20秒前
无心的天真完成签到 ,获得积分10
21秒前
君莫笑完成签到,获得积分10
21秒前
热心不凡完成签到,获得积分10
24秒前
乌特拉完成签到 ,获得积分10
24秒前
晚风完成签到,获得积分10
24秒前
元夕完成签到,获得积分10
24秒前
飘逸蘑菇完成签到 ,获得积分10
26秒前
风中的棒棒糖完成签到 ,获得积分10
29秒前
无私的听荷完成签到,获得积分10
29秒前
飘萍过客完成签到,获得积分10
30秒前
30秒前
31秒前
31秒前
皛鱼完成签到,获得积分10
33秒前
大脸猫完成签到 ,获得积分10
33秒前
量子星尘发布了新的文献求助10
35秒前
小林神发布了新的文献求助10
35秒前
adamchris完成签到,获得积分10
35秒前
strama完成签到,获得积分10
36秒前
梓唯忧完成签到 ,获得积分10
37秒前
37秒前
pan完成签到,获得积分10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789548
求助须知:如何正确求助?哪些是违规求助? 5721282
关于积分的说明 15474982
捐赠科研通 4917368
什么是DOI,文献DOI怎么找? 2646953
邀请新用户注册赠送积分活动 1594561
关于科研通互助平台的介绍 1549099