MCGLN: A multimodal ConvLSTM-GAN framework for lightning nowcasting utilizing multi-source spatiotemporal data

临近预报 计算机科学 雷电探测 闪电(连接器) 特征(语言学) 概率逻辑 机器学习 人工智能 深度学习 数据挖掘 雷雨 气象学 功率(物理) 物理 量子力学 语言学 哲学
作者
Mingyue Lu,Chuanwei Jin,Manzhu Yu,Qian Zhang,Hui Liu,Zhiyu Huang,Tongtong Dong
出处
期刊:Atmospheric Research [Elsevier]
卷期号:297: 107093-107093 被引量:3
标识
DOI:10.1016/j.atmosres.2023.107093
摘要

Lightning phenomena can instigate a cascade of calamities, encompassing fires, electrical infrastructure damage, and risks to human safety. Deep-learning-based lightning nowcasting models have demonstrated significant effectiveness in disaster prevention and mitigation. However, existing studies often neglect the impacts of surface features on lightning activities, and conventional lightning prediction techniques based on convolutional and recurrent networks face challenges such as the loss of feature information. Addressing these issues, this paper presents a novel model for lightning nowcasting, the Multimodal ConvLSTM-GAN for Lightning Nowcasting (MCGLN). This model integrates a Generative Adversarial Network (GAN) with a Convolutional Long Short-Term Memory network (ConvLSTM), utilizing multi-source data as inputs. It incorporates a spatiotemporal encoder-forecaster framework within the Generator to improve the capture of multidimensional spatiotemporal feature information, thus boosting predictive accuracy. MCGLN offers probabilistic prediction results, allowing users to customize warning thresholds following their specific tolerance for false and missed alarms. The performance of the MCGLN model is evaluated through empirical analysis, utilizing real lightning datasets sourced from Zhejiang and surrounding areas. Experimental results demonstrate that: (a) The MCGLN model outperforms existing methods in terms of detection capability and overall performance, showing significant improvements in the modeling process. (b) Increasing the number of data sources improves detection capabilities, reduces the probability of false alarms, and boosts the model performance. (c) The use of radar data enhances the recognition of high-probability lightning occurrences, and the inclusion of surface feature data increases the capture of terrestrial lightning genesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wu发布了新的文献求助10
刚刚
wintercyan完成签到,获得积分10
刚刚
2秒前
2秒前
妮儿发布了新的文献求助10
2秒前
2秒前
MADKAI发布了新的文献求助10
3秒前
insane完成签到,获得积分10
3秒前
云儿发布了新的文献求助20
3秒前
Jasper应助哲999采纳,获得10
3秒前
wanci应助拟拟采纳,获得10
4秒前
王超超完成签到,获得积分10
4秒前
4秒前
圈圈发布了新的文献求助10
5秒前
狼来了aas完成签到,获得积分10
5秒前
5秒前
大胆的莛发布了新的文献求助10
6秒前
文静的信封完成签到,获得积分10
6秒前
CipherSage应助wu采纳,获得10
6秒前
科目三应助震666采纳,获得30
6秒前
April发布了新的文献求助10
7秒前
加菲丰丰应助猫橘汽水采纳,获得30
7秒前
阳光海云完成签到,获得积分10
7秒前
8秒前
攒一口袋星星完成签到,获得积分10
8秒前
alwry完成签到,获得积分10
8秒前
eyebrow完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
小胖鱼完成签到,获得积分20
9秒前
Grayball应助啊这啥啊这是采纳,获得10
10秒前
cf完成签到,获得积分10
10秒前
王一线完成签到,获得积分10
11秒前
11秒前
11秒前
栗子完成签到,获得积分10
11秒前
bkagyin应助格格星采纳,获得10
12秒前
Youdge完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740