MCGLN: A multimodal ConvLSTM-GAN framework for lightning nowcasting utilizing multi-source spatiotemporal data

临近预报 计算机科学 雷电探测 闪电(连接器) 特征(语言学) 概率逻辑 机器学习 人工智能 深度学习 数据挖掘 雷雨 气象学 功率(物理) 物理 量子力学 语言学 哲学
作者
Mingyue Lu,Chuanwei Jin,Manzhu Yu,Qian Zhang,Hui Liu,Zhiyu Huang,Tongtong Dong
出处
期刊:Atmospheric Research [Elsevier BV]
卷期号:297: 107093-107093 被引量:8
标识
DOI:10.1016/j.atmosres.2023.107093
摘要

Lightning phenomena can instigate a cascade of calamities, encompassing fires, electrical infrastructure damage, and risks to human safety. Deep-learning-based lightning nowcasting models have demonstrated significant effectiveness in disaster prevention and mitigation. However, existing studies often neglect the impacts of surface features on lightning activities, and conventional lightning prediction techniques based on convolutional and recurrent networks face challenges such as the loss of feature information. Addressing these issues, this paper presents a novel model for lightning nowcasting, the Multimodal ConvLSTM-GAN for Lightning Nowcasting (MCGLN). This model integrates a Generative Adversarial Network (GAN) with a Convolutional Long Short-Term Memory network (ConvLSTM), utilizing multi-source data as inputs. It incorporates a spatiotemporal encoder-forecaster framework within the Generator to improve the capture of multidimensional spatiotemporal feature information, thus boosting predictive accuracy. MCGLN offers probabilistic prediction results, allowing users to customize warning thresholds following their specific tolerance for false and missed alarms. The performance of the MCGLN model is evaluated through empirical analysis, utilizing real lightning datasets sourced from Zhejiang and surrounding areas. Experimental results demonstrate that: (a) The MCGLN model outperforms existing methods in terms of detection capability and overall performance, showing significant improvements in the modeling process. (b) Increasing the number of data sources improves detection capabilities, reduces the probability of false alarms, and boosts the model performance. (c) The use of radar data enhances the recognition of high-probability lightning occurrences, and the inclusion of surface feature data increases the capture of terrestrial lightning genesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我再也不闹着去叔叔阿姨家吃饭了完成签到 ,获得积分10
1秒前
等待寄云发布了新的文献求助10
1秒前
青堤完成签到,获得积分10
2秒前
3秒前
dwx0529完成签到,获得积分10
3秒前
传奇3应助Lion采纳,获得10
4秒前
fantianhui完成签到 ,获得积分10
4秒前
4秒前
hc完成签到 ,获得积分10
6秒前
帝都温泉关注了科研通微信公众号
8秒前
IDHNAPHO完成签到,获得积分10
8秒前
letter发布了新的文献求助10
10秒前
李爱国应助Jim采纳,获得10
10秒前
10秒前
ayuelei发布了新的文献求助10
11秒前
十一应助wen采纳,获得10
11秒前
wdlc完成签到,获得积分10
13秒前
14秒前
SciGPT应助糟糕的涵梅采纳,获得10
14秒前
苹果人生完成签到,获得积分20
14秒前
hero_ljw完成签到,获得积分10
15秒前
研友_ZbM2qn完成签到,获得积分10
15秒前
VDC发布了新的文献求助10
16秒前
科研通AI5应助陈虹求采纳,获得40
16秒前
xsss发布了新的文献求助10
17秒前
Hello应助ayuelei采纳,获得10
18秒前
传奇3应助DY采纳,获得10
19秒前
Owen应助DY采纳,获得10
19秒前
大模型应助DY采纳,获得10
19秒前
东方天奇完成签到 ,获得积分10
19秒前
19秒前
19秒前
科目三应助高大的迎梦采纳,获得10
19秒前
CangZm1完成签到 ,获得积分10
21秒前
manman发布了新的文献求助10
21秒前
21秒前
letter完成签到,获得积分10
21秒前
喻紫寒完成签到 ,获得积分10
22秒前
小蘑菇应助望远山采纳,获得10
23秒前
卿年发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4544308
求助须知:如何正确求助?哪些是违规求助? 3976503
关于积分的说明 12314209
捐赠科研通 3644494
什么是DOI,文献DOI怎么找? 2007062
邀请新用户注册赠送积分活动 1042502
科研通“疑难数据库(出版商)”最低求助积分说明 931557