MCGLN: A multimodal ConvLSTM-GAN framework for lightning nowcasting utilizing multi-source spatiotemporal data

临近预报 计算机科学 雷电探测 闪电(连接器) 特征(语言学) 概率逻辑 机器学习 人工智能 深度学习 数据挖掘 雷雨 气象学 功率(物理) 物理 量子力学 语言学 哲学
作者
Mingyue Lu,Chuanwei Jin,Manzhu Yu,Qian Zhang,Hui Liu,Zhiyu Huang,Tongtong Dong
出处
期刊:Atmospheric Research [Elsevier BV]
卷期号:297: 107093-107093 被引量:8
标识
DOI:10.1016/j.atmosres.2023.107093
摘要

Lightning phenomena can instigate a cascade of calamities, encompassing fires, electrical infrastructure damage, and risks to human safety. Deep-learning-based lightning nowcasting models have demonstrated significant effectiveness in disaster prevention and mitigation. However, existing studies often neglect the impacts of surface features on lightning activities, and conventional lightning prediction techniques based on convolutional and recurrent networks face challenges such as the loss of feature information. Addressing these issues, this paper presents a novel model for lightning nowcasting, the Multimodal ConvLSTM-GAN for Lightning Nowcasting (MCGLN). This model integrates a Generative Adversarial Network (GAN) with a Convolutional Long Short-Term Memory network (ConvLSTM), utilizing multi-source data as inputs. It incorporates a spatiotemporal encoder-forecaster framework within the Generator to improve the capture of multidimensional spatiotemporal feature information, thus boosting predictive accuracy. MCGLN offers probabilistic prediction results, allowing users to customize warning thresholds following their specific tolerance for false and missed alarms. The performance of the MCGLN model is evaluated through empirical analysis, utilizing real lightning datasets sourced from Zhejiang and surrounding areas. Experimental results demonstrate that: (a) The MCGLN model outperforms existing methods in terms of detection capability and overall performance, showing significant improvements in the modeling process. (b) Increasing the number of data sources improves detection capabilities, reduces the probability of false alarms, and boosts the model performance. (c) The use of radar data enhances the recognition of high-probability lightning occurrences, and the inclusion of surface feature data increases the capture of terrestrial lightning genesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助伊梦采纳,获得10
1秒前
1秒前
2秒前
量子星尘发布了新的文献求助150
2秒前
武紫安完成签到,获得积分10
3秒前
4秒前
清韵微风发布了新的文献求助10
6秒前
老高发布了新的文献求助10
7秒前
7秒前
ztt完成签到,获得积分10
8秒前
10秒前
10秒前
许迪发布了新的文献求助30
10秒前
11秒前
parpate发布了新的文献求助10
11秒前
12秒前
Stacey完成签到,获得积分10
13秒前
张起灵完成签到,获得积分10
13秒前
15秒前
15秒前
阅读文献发布了新的文献求助10
16秒前
共享精神应助孙勇发采纳,获得10
18秒前
优雅莞发布了新的文献求助10
19秒前
斯文败类应助如常采纳,获得10
19秒前
向阳发布了新的文献求助10
20秒前
11发布了新的文献求助10
21秒前
22秒前
砰砰彭发布了新的文献求助20
23秒前
爆米花应助王多肉采纳,获得10
24秒前
山南驳回了打打应助
26秒前
Chaos完成签到,获得积分10
26秒前
26秒前
遇上就这样吧应助kento采纳,获得50
27秒前
28秒前
28秒前
29秒前
30秒前
梨花月应助司空元正采纳,获得10
30秒前
31秒前
学fei了吗完成签到,获得积分10
31秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5135008
求助须知:如何正确求助?哪些是违规求助? 4335582
关于积分的说明 13507290
捐赠科研通 4173211
什么是DOI,文献DOI怎么找? 2288286
邀请新用户注册赠送积分活动 1289005
关于科研通互助平台的介绍 1230049