MCGLN: A multimodal ConvLSTM-GAN framework for lightning nowcasting utilizing multi-source spatiotemporal data

临近预报 计算机科学 雷电探测 闪电(连接器) 特征(语言学) 概率逻辑 机器学习 人工智能 深度学习 数据挖掘 雷雨 气象学 功率(物理) 物理 量子力学 语言学 哲学
作者
Mingyue Lu,Chuanwei Jin,Manzhu Yu,Qian Zhang,Hui Liu,Zhiyu Huang,Tongtong Dong
出处
期刊:Atmospheric Research [Elsevier]
卷期号:297: 107093-107093 被引量:8
标识
DOI:10.1016/j.atmosres.2023.107093
摘要

Lightning phenomena can instigate a cascade of calamities, encompassing fires, electrical infrastructure damage, and risks to human safety. Deep-learning-based lightning nowcasting models have demonstrated significant effectiveness in disaster prevention and mitigation. However, existing studies often neglect the impacts of surface features on lightning activities, and conventional lightning prediction techniques based on convolutional and recurrent networks face challenges such as the loss of feature information. Addressing these issues, this paper presents a novel model for lightning nowcasting, the Multimodal ConvLSTM-GAN for Lightning Nowcasting (MCGLN). This model integrates a Generative Adversarial Network (GAN) with a Convolutional Long Short-Term Memory network (ConvLSTM), utilizing multi-source data as inputs. It incorporates a spatiotemporal encoder-forecaster framework within the Generator to improve the capture of multidimensional spatiotemporal feature information, thus boosting predictive accuracy. MCGLN offers probabilistic prediction results, allowing users to customize warning thresholds following their specific tolerance for false and missed alarms. The performance of the MCGLN model is evaluated through empirical analysis, utilizing real lightning datasets sourced from Zhejiang and surrounding areas. Experimental results demonstrate that: (a) The MCGLN model outperforms existing methods in terms of detection capability and overall performance, showing significant improvements in the modeling process. (b) Increasing the number of data sources improves detection capabilities, reduces the probability of false alarms, and boosts the model performance. (c) The use of radar data enhances the recognition of high-probability lightning occurrences, and the inclusion of surface feature data increases the capture of terrestrial lightning genesis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
孤独天薇完成签到,获得积分10
2秒前
2秒前
2秒前
hermit完成签到,获得积分10
3秒前
4秒前
爱听歌土豆完成签到 ,获得积分10
5秒前
5秒前
宜菏发布了新的文献求助10
6秒前
wssf756应助ChenYX采纳,获得20
7秒前
7秒前
周子博发布了新的文献求助10
7秒前
朴素定帮完成签到,获得积分10
8秒前
8秒前
偷菜帅哥发布了新的文献求助10
8秒前
CYYDNDB发布了新的文献求助10
8秒前
Arron完成签到,获得积分10
9秒前
文静元霜发布了新的文献求助10
10秒前
踩点行动完成签到,获得积分10
10秒前
10秒前
11秒前
abcdv发布了新的文献求助30
11秒前
李兴起完成签到,获得积分10
13秒前
威武的亦绿完成签到,获得积分20
14秒前
Jiye发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
Lee完成签到,获得积分20
16秒前
萧萧应助Bressanone采纳,获得10
16秒前
怕黑不惜完成签到,获得积分10
16秒前
18秒前
文静元霜完成签到,获得积分10
19秒前
小寒同学发布了新的文献求助10
19秒前
zhang完成签到 ,获得积分10
20秒前
听雨落发布了新的文献求助30
20秒前
NE发布了新的文献求助10
22秒前
仂尤发布了新的文献求助10
22秒前
dddd完成签到,获得积分10
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298441
求助须知:如何正确求助?哪些是违规求助? 4446944
关于积分的说明 13841126
捐赠科研通 4332352
什么是DOI,文献DOI怎么找? 2378131
邀请新用户注册赠送积分活动 1373367
关于科研通互助平台的介绍 1338964