Machine learning developed a programmed cell death signature for predicting prognosis and immunotherapy benefits in lung adenocarcinoma

免疫疗法 腺癌 肺癌 医学 肿瘤科 基因敲除 基因签名 内科学 癌症研究 肿瘤微环境 程序性细胞死亡 癌症 细胞凋亡 生物 基因 基因表达 生物化学
作者
Dongxiao Ding,Liangbin Wang,Yunqiang Zhang,Ke Shi,Yaxing Shen
出处
期刊:Translational Oncology [Elsevier BV]
卷期号:38: 101784-101784 被引量:6
标识
DOI:10.1016/j.tranon.2023.101784
摘要

Lung cancer is the leading cause of cancer-related deaths worldwide with poor prognosis. Programmed cell death (PCD) plays a crucial function in tumor progression and immunotherapy response in lung adenocarcinoma (LUAD).Integrative machine learning procedure including 10 methods was performed to develop a prognostic cell death signature (CDS) using TCGA, GSE30129, GSE31210, GSE37745, GSE42127, GSE50081, GSE68467, GSE68571, and GSE72094 dataset. The correlation between CDS and tumor immune microenvironment was evaluated using various methods and single cell analysis. qRT-PCR and CCK-8 assay were conducted to explore the biological functions of hub gene.The prognostic CDS developed by Lasso + survivalSVM method was regarded as the optimal prognostic model. The CDS had a stable and powerful performance in predicting the clinical outcome of LUAD and served as an independent risk factor in TCGA and 8 GEO datasets. The C-index of CDS was higher than that of clinical stage and many developed signatures for LUAD. LUAD patients with low CDS score had a higher PD1&CTLA4 immunophenoscore, higher TMB score, lower TIDE score and lower tumor escape score, indicating a better immunotherapy benefit. Single cell analysis revealed a strong and frequent communication between epithelial cells and cancer-related fibroblasts by specific ligand-receptor pairs, including COL1A2-SDC4 and COL1A2-SDC1. Vitro experiment showed that SLC7A5 was upregulated in LUAD and knockdown of SLC7A5 obviously suppressed tumor cell proliferation.Our study developed a novel CDS for LUAD. The CDS served as an indicator for predicting the prognosis and immunotherapy benefits of LAUD patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lz555完成签到 ,获得积分10
刚刚
orixero应助泯珉采纳,获得10
1秒前
大模型应助明亮无颜采纳,获得10
1秒前
情怀应助Dee采纳,获得10
1秒前
麦苳完成签到,获得积分10
1秒前
dudu完成签到,获得积分10
1秒前
1秒前
星辰大海应助明理翼采纳,获得10
1秒前
现代大神完成签到,获得积分10
2秒前
荆棘鸟完成签到,获得积分10
2秒前
2秒前
彭于晏应助CM采纳,获得10
2秒前
Tomate发布了新的文献求助10
3秒前
3秒前
科研通AI2S应助zhao采纳,获得10
3秒前
liang19640908完成签到 ,获得积分10
3秒前
DY发布了新的文献求助10
3秒前
热心枕头完成签到,获得积分10
4秒前
玉米发布了新的文献求助30
4秒前
4秒前
晓鹏发布了新的文献求助10
4秒前
汉堡包应助沉寂的希望采纳,获得10
4秒前
4秒前
青提芝士挞完成签到,获得积分10
5秒前
wei发布了新的文献求助10
5秒前
子铭完成签到,获得积分10
5秒前
hxxx发布了新的文献求助10
5秒前
IMkily发布了新的文献求助10
6秒前
谦谦发布了新的文献求助10
6秒前
可爱的函函应助你你你采纳,获得10
6秒前
zlj发布了新的文献求助10
8秒前
充电宝应助无奈的老姆采纳,获得10
8秒前
8秒前
哈哈完成签到,获得积分10
9秒前
北斋发布了新的文献求助10
9秒前
飞天大野猪完成签到 ,获得积分10
10秒前
充电宝应助喵小琪采纳,获得30
10秒前
121231233应助33采纳,获得50
10秒前
不乐发布了新的文献求助10
11秒前
Swilder完成签到 ,获得积分10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729962
求助须知:如何正确求助?哪些是违规求助? 3274817
关于积分的说明 9989012
捐赠科研通 2990256
什么是DOI,文献DOI怎么找? 1640957
邀请新用户注册赠送积分活动 779507
科研通“疑难数据库(出版商)”最低求助积分说明 748235